Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 10(1)2021 Jan 12.
Article in English | MEDLINE | ID: mdl-33445708

ABSTRACT

Dittrichia viscosa (L.) Greuter, a plant species common in the Mediterranean basin, produces several bioactive compounds, some of which have herbicidal effects. A number of greenhouse and field experiments were carried out in order to evaluate if these effects could be obtained also by using the whole plant biomass, to identify the efficacious doses, determine their effects on seed germination and weed emergence, and to evaluate influence of soil characteristics on biomass efficacy. The experiments carried out evidenced that: (i) the dried biomass completely hampers plant emergence when high doses (30-40 kg biomass m-3 of soil) are mixed into the soil, or delays it at a lower dose (10 kg m-3); (ii) the detrimental effects are not affected by soil type. The exploitation of the D. viscosa dried biomass appears to be a feasible option in weed management practices and its potential is discussed.

2.
Plant Foods Hum Nutr ; 75(1): 33-40, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31741122

ABSTRACT

Nowadays, a growing body of evidence supports the view that plants offer an extraordinary opportunity to discover and develop new promising therapeutic strategies for many diseases, including cancer. Here we tested the anticancer action against Hepatocellular carcinoma (HCC) of extracts obtained from two plants harvested in Apulia, namely Brassica oleracea L. and Crithmum maritimum L. B. oleracea was grown in biodynamical agriculture without any agrochemical input, instead C. maritimum was collected on Apulian coasts and is still commonly eaten in Apulia. HCC, one of the most frequent tumors worldwide, is estimated to become the third leading cause of cancer-related deaths in Western Countries by 2030. The approved synthetic drugs for the treatment of HCC are currently inadequate in terms of therapeutic results and tolerability. Hence, aim of the present study was to test the anticancer action against HCC of extracts obtained from Brassica oleracea L. and Crithmum maritimum L. We preliminary prepared extracts from both plants using four solvents with different polarity: hexane, ethyl acetate, methanol and ethanol. Then, we tested the effect of the different fractions in inhibiting HCC cell growth. Finally, we characterized the mechanism of action of the most effective fraction. We found that ethyl acetate fractions from both plants were the most effective in inhibiting HCC growth. In particular, we demonstrated that these fractions effectively reduce HCC growth by exerting, on one hand, a cytostatic effect through their action on the cell cycle, and on the other hand by triggering apoptosis and necrosis. Our findings support the notion that ethyl acetate fractions from Apulian B. oleracea and C. maritimum can be in perspective considered as promising tools to expand the opportunities to identify new and not toxic anticancer therapeutic approaches for HCC. Further pharmacological investigations will shed light on how this could be effectively achieved. Graphical Abstract Experimental workflow for the detection of the ethyl acetate extract of Brassica oleracea L. and Crithmum maritimum L. as an active fraction in inhibiting HCC cell growth.


Subject(s)
Brassica , Carcinoma, Hepatocellular , Liver Neoplasms , Acetates , Humans , Plant Extracts
SELECTION OF CITATIONS
SEARCH DETAIL
...