Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 232: 165-170, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30472559

ABSTRACT

Odour emissions are a major environmental issue associated with fishmeal production. Laboratory-scale biotrickling filters (BTFs) were inoculated with microbial consortia derived from sewage sludge, with the goal to study the biotreatment of low-loads of methylamines and ammonia that are main components of odorous exhaust gases produced by fishmeal processing plants. A BTF packed with ceramic rings was subjected to a real fishmeal plant emission containing trimethylamine (TMA), dimethylamine (DMA) and monomethylamine (MMA). The highest elimination capacities (ECs) obtained were 372 mg TMA m-3 h-1, 5.518 mg DMA m-3 h-1 and 1.038 mg MMA m-3 h-1, with maximal removal efficiencies of 92% (TMA), 83% (DMA) and 95% (MMA) after 30 days operation. In a different experiment, a polyurethane foam packing was employed to treat ammonia (NH3) at low inlet loads, reaching an EC of 47.19 mg N m-3 h-1 with 99.8% efficiency (inlet load of 47.27 mg N m-3 h-1). Likewise, the microbial community of the polyurethane-associated biofilm was diverse and stable during operation. These results suggested that elimination of volatile amino-compounds using BTFs inoculated with a methylotrophic microbial consortium holds potential for odour removal. In addition, sequencing analysis of 16S rDNA gene fragments allowed the identification of heterotrophic ammonia-oxidizing bacteria that are promising candidates to effectively maintain ammonia elimination in a biotreatment operation of nitrogenous compounds present in exhaust gases from fishmeal facilities.


Subject(s)
Gases , Nitrogen Compounds , Biodegradation, Environmental , Bioreactors , Filtration
SELECTION OF CITATIONS
SEARCH DETAIL
...