Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Syst Biol ; 19(7): e11267, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37259925

ABSTRACT

While cellular metabolism impacts the DNA damage response, a systematic understanding of the metabolic requirements that are crucial for DNA damage repair has yet to be achieved. Here, we investigate the metabolic enzymes and processes that are essential for the resolution of DNA damage. By integrating functional genomics with chromatin proteomics and metabolomics, we provide a detailed description of the interplay between cellular metabolism and the DNA damage response. Further analysis identified that Peroxiredoxin 1, PRDX1, contributes to the DNA damage repair. During the DNA damage response, PRDX1 translocates to the nucleus where it reduces DNA damage-induced nuclear reactive oxygen species. Moreover, PRDX1 loss lowers aspartate availability, which is required for the DNA damage-induced upregulation of de novo nucleotide synthesis. In the absence of PRDX1, cells accumulate replication stress and DNA damage, leading to proliferation defects that are exacerbated in the presence of etoposide, thus revealing a role for PRDX1 as a DNA damage surveillance factor.


Subject(s)
Aspartic Acid , Peroxiredoxins , Aspartic Acid/genetics , Aspartic Acid/metabolism , DNA Damage , Oxidative Stress/genetics , Peroxiredoxins/genetics , Peroxiredoxins/metabolism , Reactive Oxygen Species/metabolism , Humans
2.
Cell Death Dis ; 14(6): 357, 2023 06 10.
Article in English | MEDLINE | ID: mdl-37301844

ABSTRACT

Pediatric Acute Myeloid Leukemia (AML) is a rare and heterogeneous disease characterized by a high prevalence of gene fusions as driver mutations. Despite the improvement of survival in the last years, about 50% of patients still experience a relapse. It is not possible to improve prognosis only with further intensification of chemotherapy, as come with a severe cost to the health of patients, often resulting in treatment-related death or long-term sequels. To design more effective and less toxic therapies we need a better understanding of pediatric AML biology. The NUP98-KDM5A chimeric protein is exclusively found in a particular subgroup of young pediatric AML patients with complex karyotypes and poor prognosis. In this study, we investigated the impact of NUP98-KDM5A expression on cellular processes in human Pluripotent Stem Cell models and a patient-derived cell line. We found that NUP98-KDM5A generates genomic instability through two complementary mechanisms that involve accumulation of DNA damage and direct interference of RAE1 activity during mitosis. Overall, our data support that NUP98-KDM5A promotes genomic instability and likely contributes to malignant transformation.


Subject(s)
Leukemia, Myeloid, Acute , Oncogene Proteins, Fusion , Humans , Child , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Nuclear Pore Complex Proteins/genetics , Nuclear Pore Complex Proteins/metabolism , Oncogene Proteins/genetics , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Genomic Instability , Retinoblastoma-Binding Protein 2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...