Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
2.
Cancer Cell ; 41(7): 1327-1344.e10, 2023 07 10.
Article in English | MEDLINE | ID: mdl-37352862

ABSTRACT

Gastric neuroendocrine carcinomas (G-NEC) are aggressive malignancies with poorly understood biology and a lack of disease models. Here, we use genome sequencing to characterize the genomic landscapes of human G-NEC and its histologic variants. We identify global and subtype-specific alterations and expose hitherto unappreciated gains of MYC family members in a large part of cases. Genetic engineering and lineage tracing in mice delineate a model of G-NEC evolution, which defines MYC as a critical driver and positions the cancer cell of origin to the neuroendocrine compartment. MYC-driven tumors have pronounced metastatic competence and display defined signaling addictions, as revealed by large-scale genetic and pharmacologic screening of cell lines and organoid resources. We create global maps of G-NEC dependencies, highlight critical vulnerabilities, and validate therapeutic targets, including candidates for clinical drug repurposing. Our study gives comprehensive insights into G-NEC biology.


Subject(s)
Carcinoma, Neuroendocrine , Neuroendocrine Tumors , Stomach Neoplasms , Humans , Animals , Mice , Carcinoma, Neuroendocrine/drug therapy , Carcinoma, Neuroendocrine/genetics , Carcinoma, Neuroendocrine/metabolism , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Models, Molecular , Neuroendocrine Tumors/drug therapy , Neuroendocrine Tumors/genetics
3.
J Clin Invest ; 133(13)2023 07 03.
Article in English | MEDLINE | ID: mdl-37219943

ABSTRACT

Recent transcriptomic-based analysis of diffuse large B cell lymphoma (DLBCL) has highlighted the clinical relevance of LN fibroblast and tumor-infiltrating lymphocyte (TIL) signatures within the tumor microenvironment (TME). However, the immunomodulatory role of fibroblasts in lymphoma remains unclear. Here, by studying human and mouse DLBCL-LNs, we identified the presence of an aberrantly remodeled fibroblastic reticular cell (FRC) network expressing elevated fibroblast-activated protein (FAP). RNA-Seq analyses revealed that exposure to DLBCL reprogrammed key immunoregulatory pathways in FRCs, including a switch from homeostatic to inflammatory chemokine expression and elevated antigen-presentation molecules. Functional assays showed that DLBCL-activated FRCs (DLBCL-FRCs) hindered optimal TIL and chimeric antigen receptor (CAR) T cell migration. Moreover, DLBCL-FRCs inhibited CD8+ TIL cytotoxicity in an antigen-specific manner. Notably, the interrogation of patient LNs with imaging mass cytometry identified distinct environments differing in their CD8+ TIL-FRC composition and spatial organization that associated with survival outcomes. We further demonstrated the potential to target inhibitory FRCs to rejuvenate interacting TILs. Cotreating organotypic cultures with FAP-targeted immunostimulatory drugs and a bispecific antibody (glofitamab) augmented antilymphoma TIL cytotoxicity. Our study reveals an immunosuppressive role of FRCs in DLBCL, with implications for immune evasion, disease pathogenesis, and optimizing immunotherapy for patients.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , T-Lymphocytes , Humans , Mice , Animals , Lymphoma, Large B-Cell, Diffuse/pathology , Fibroblasts/metabolism , Lymph Nodes , Tumor Microenvironment
4.
EMBO Mol Med ; 14(6): e15816, 2022 06 08.
Article in English | MEDLINE | ID: mdl-35510955

ABSTRACT

Peripheral T-cell lymphoma (PTCL) represents a rare group of heterogeneous diseases in urgent need of effective treatments. A scarcity of disease-relevant preclinical models hinders research advances. Here, we isolated a novel mouse (m)PTCL by serially transplanting a lymphoma from a germinal center B-cell hyperplasia model (Cγ1-Cre Blimp1fl/fl ) through immune-competent mice. Lymphoma cells were identified as clonal TCRß+ T-helper cells expressing T-follicular helper markers. We also observed coincident B-cell activation and development of a de novo B-cell lymphoma in the model, reminiscent of B-cell activation/lymphomagenesis found in human PTCL. Molecular profiling linked the mPTCL to the high-risk "GATA3" subtype of PTCL, showing GATA3 and Th2 gene expression, PI3K/mTOR pathway enrichment, hyperactivated MYC, and genome instability. Exome sequencing identified a human-relevant oncogenic ß-catenin mutation possibly involved in T-cell lymphomagenesis. Prolonged treatment responses were achieved in vivo by targeting ATR in the DNA damage response (DDR), a result corroborated in PTCL cell lines. This work provides mechanistic insight into the molecular and immunological drivers of T-cell lymphomagenesis and proposes DDR inhibition as an effective and readily translatable therapy in PTCL.


Subject(s)
DNA Damage , GATA3 Transcription Factor , Lymphoma, T-Cell, Peripheral , Animals , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , GATA3 Transcription Factor/genetics , Lymphoma, T-Cell, Peripheral/genetics , Lymphoma, T-Cell, Peripheral/immunology , Lymphoma, T-Cell, Peripheral/metabolism , Lymphoma, T-Cell, Peripheral/pathology , Mice , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
5.
J Clin Invest ; 132(9)2022 05 02.
Article in English | MEDLINE | ID: mdl-35316216

ABSTRACT

The synthesis of serine from glucose is a key metabolic pathway supporting cellular proliferation in healthy and malignant cells. Despite this, the role that this aspect of metabolism plays in germinal center biology and pathology is not known. Here, we performed a comprehensive characterization of the role of the serine synthesis pathway in germinal center B cells and lymphomas derived from these cells. We demonstrate that upregulation of a functional serine synthesis pathway is a metabolic hallmark of B cell activation and the germinal center reaction. Inhibition of phosphoglycerate dehydrogenase (PHGDH), the first and rate-limiting enzyme in this pathway, led to defective germinal formation and impaired high-affinity antibody production. In addition, overexpression of enzymes involved in serine synthesis was a characteristic of germinal center B cell-derived lymphomas, with high levels of expression being predictive of reduced overall survival in diffuse large B cell lymphoma. Inhibition of PHGDH induced apoptosis in lymphoma cells, reducing disease progression. These findings establish PHGDH as a critical player in humoral immunity and a clinically relevant target in lymphoma.


Subject(s)
Lymphoma, B-Cell , Lymphoma , Cell Proliferation , Germinal Center , Humans , Lymphoma/genetics , Lymphoma, B-Cell/genetics , Phosphoglycerate Dehydrogenase/genetics , Phosphoglycerate Dehydrogenase/metabolism , Serine/metabolism
6.
Methods Mol Biol ; 2366: 321-342, 2021.
Article in English | MEDLINE | ID: mdl-34236648

ABSTRACT

Enforced activation of NF-κB signaling can be achieved by constitutive NF-κB-inducing kinases, IKK2 and NIK, or via lymphoma-associated mutants of MYD88, CARD11, and CD79B. In order to model Diffuse Large B Cell Lymphoma (DLBCL) in mice, conditional alleles for these proteins are combined with alleles targeting Cre recombinase expression in mature B cells. However, unopposed NF-κB signaling promotes plasmablast differentiation, and as a consequence the model system must be complemented with further mutations that block differentiation, such as Prdm1/BLIMP1 inactivation or overexpression of BCL6. Here, we describe the currently available tools for DLBCL models in mice and their relative advantages and drawbacks. Furthermore, we describe methods to monitor lymphomagenesis, using ultrasound tomography of the spleen, and the technique of partial splenectomy surgery with recovery. These powerful techniques allow paired comparison of individual lymphoma cases before and after interventions, including therapies, and to study the evolution of lymphoma over time. NF-κB activation also promotes widespread nodal involvement with lymphoma and we describe the post-mortem dissection of major nodal groups.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , Animals , B-Lymphocytes/metabolism , Disease Models, Animal , Lymphoma, Large B-Cell, Diffuse/genetics , Mice , Mutation , NF-kappa B/genetics , NF-kappa B/metabolism , Signal Transduction
7.
Cancer Cell ; 36(1): 68-83.e9, 2019 07 08.
Article in English | MEDLINE | ID: mdl-31257073

ABSTRACT

RAC1 P29 is the third most commonly mutated codon in human cutaneous melanoma, after BRAF V600 and NRAS Q61. Here, we study the role of RAC1P29S in melanoma development and reveal that RAC1P29S activates PAK, AKT, and a gene expression program initiated by the SRF/MRTF transcriptional pathway, which results in a melanocytic to mesenchymal phenotypic switch. Mice with ubiquitous expression of RAC1P29S from the endogenous locus develop lymphoma. When expressed only in melanocytes, RAC1P29S cooperates with oncogenic BRAF or with NF1-loss to promote tumorigenesis. RAC1P29S also drives resistance to BRAF inhibitors, which is reversed by SRF/MRTF inhibitors. These findings establish RAC1P29S as a promoter of melanoma initiation and mediator of therapy resistance, while identifying SRF/MRTF as a potential therapeutic target.


Subject(s)
Cell Transformation, Neoplastic/genetics , Drug Resistance, Neoplasm/genetics , Epithelial-Mesenchymal Transition/genetics , Melanoma/etiology , Melanoma/pathology , Mutation , rac1 GTP-Binding Protein/genetics , Alleles , Amino Acid Substitution , Animals , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/genetics , Disease Models, Animal , Female , Gene Expression , Humans , Male , Melanocytes/metabolism , Melanoma/mortality , Melanoma/therapy , Mice , Mice, Transgenic , Models, Biological , Prognosis , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins B-raf/genetics , Serum Response Factor , Xenograft Model Antitumor Assays
8.
Cell Chem Biol ; 26(6): 892-900.e4, 2019 06 20.
Article in English | MEDLINE | ID: mdl-31006618

ABSTRACT

On-target, cell-active chemical probes are of fundamental importance in chemical and cell biology, whereas poorly characterized probes often lead to invalid conclusions. Human N-myristoyltransferase (NMT) has attracted increasing interest as target in cancer and infectious diseases. Here we report an in-depth comparison of five compounds widely applied as human NMT inhibitors, using a combination of quantitative whole-proteome N-myristoylation profiling, biochemical enzyme assays, cytotoxicity, in-cell protein synthesis, and cell-cycle assays. We find that N-myristoylation is unaffected by 2-hydroxymyristic acid (100 µM), D-NMAPPD (30 µM), or Tris-DBA palladium (10 µM), with the latter compounds causing cytotoxicity through mechanisms unrelated to NMT. In contrast, drug-like inhibitors IMP-366 (DDD85646) and IMP-1088 delivered complete and specific inhibition of N-myristoylation in a range of cell lines at 1 µM and 100 nM, respectively. This study enables the selection of appropriate on-target probes for future studies and suggests the need for reassessment of previous studies that used off-target compounds.


Subject(s)
Acyltransferases/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Myristic Acids/pharmacology , Acyltransferases/metabolism , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Enzyme Inhibitors/chemistry , Humans , Molecular Structure , Myristic Acids/chemistry , Structure-Activity Relationship
9.
Cancer Immunol Res ; 6(11): 1292-1300, 2018 11.
Article in English | MEDLINE | ID: mdl-30143537

ABSTRACT

Mouse models have been instrumental in establishing fundamental principles of cancer initiation and progression and continue to be invaluable in the discovery and further development of cancer therapies. Nevertheless, important aspects of human disease are imperfectly approximated in mouse models, notably the involvement of endogenous retroviruses (ERVs). Replication-defective ERVs, present in both humans and mice, may affect tumor development and antitumor immunity through mechanisms not involving infection. Here, we revealed an adverse effect of murine ERVs with restored infectivity on the behavior of mouse cancer models. In contrast to human cancer, where infectious ERVs have never been detected, we found that ERV infectivity was frequently restored in transplantable, as well as genetic, mouse cancer models. Such replication-competent, ERV-derived retroviruses were responsible for unusually high expression of retroviral nucleic acids and proteins in mouse cancers. Infectious ERV-derived retroviruses produced by mouse cancer cells could directly infect tumor-infiltrating host immune cells and fundamentally modified the host's immune defenses to cancer, as well as the outcome of immunotherapy. Therefore, infectious retroviruses, variably arising in mouse cancer models, but not in human cancer, have the potential to confound many immunologic studies and should be considered as a variable, if not altogether avoided. Cancer Immunol Res; 6(11); 1292-300. ©2018 AACR.


Subject(s)
Endogenous Retroviruses/pathogenicity , Neoplasms, Experimental/immunology , Neoplasms, Experimental/virology , Animals , Cell Line, Tumor , Female , Leukemia Virus, Murine/genetics , Leukemia Virus, Murine/pathogenicity , Lymphocytes, Tumor-Infiltrating/pathology , Male , Mice, Inbred C57BL , Mice, Inbred CBA , Mice, Transgenic , Neoplasms, Experimental/pathology , Positive Regulatory Domain I-Binding Factor 1/genetics , Proto-Oncogene Proteins B-raf/genetics , Retroviridae Infections/virology , Viral Tropism/physiology
10.
Nat Commun ; 9(1): 1511, 2018 04 17.
Article in English | MEDLINE | ID: mdl-29666442

ABSTRACT

Tissue and vessel wall stiffening alters endothelial cell properties and contributes to vascular dysfunction. However, whether extracellular matrix (ECM) stiffness impacts vascular development is not known. Here we show that matrix stiffness controls lymphatic vascular morphogenesis. Atomic force microscopy measurements in mouse embryos reveal that venous lymphatic endothelial cell (LEC) progenitors experience a decrease in substrate stiffness upon migration out of the cardinal vein, which induces a GATA2-dependent transcriptional program required to form the first lymphatic vessels. Transcriptome analysis shows that LECs grown on a soft matrix exhibit increased GATA2 expression and a GATA2-dependent upregulation of genes involved in cell migration and lymphangiogenesis, including VEGFR3. Analyses of mouse models demonstrate a cell-autonomous function of GATA2 in regulating LEC responsiveness to VEGF-C and in controlling LEC migration and sprouting in vivo. Our study thus uncovers a mechanism by which ECM stiffness dictates the migratory behavior of LECs during early lymphatic development.


Subject(s)
GATA2 Transcription Factor/metabolism , Gene Expression Regulation, Developmental , Lymphangiogenesis/genetics , Lymphatic Vessels/physiology , Animals , Cell Movement/genetics , Endothelial Cells/physiology , Female , GATA2 Transcription Factor/genetics , Gene Expression Profiling , Gene Knockdown Techniques , Humans , Lymphatic Vessels/cytology , Male , Mice , Mice, Transgenic , Primary Cell Culture , RNA, Small Interfering/metabolism , Vascular Endothelial Growth Factor C/metabolism , Vascular Endothelial Growth Factor Receptor-3/genetics , Vascular Endothelial Growth Factor Receptor-3/metabolism
11.
Circ Res ; 122(2): 231-245, 2018 01 19.
Article in English | MEDLINE | ID: mdl-29233846

ABSTRACT

RATIONALE: The mechanistic foundation of vascular maturation is still largely unknown. Several human pathologies are characterized by deregulated angiogenesis and unstable blood vessels. Solid tumors, for instance, get their nourishment from newly formed structurally abnormal vessels which present wide and irregular interendothelial junctions. Expression and clustering of the main endothelial-specific adherens junction protein, VEC (vascular endothelial cadherin), upregulate genes with key roles in endothelial differentiation and stability. OBJECTIVE: We aim at understanding the molecular mechanisms through which VEC triggers the expression of a set of genes involved in endothelial differentiation and vascular stabilization. METHODS AND RESULTS: We compared a VEC-null cell line with the same line reconstituted with VEC wild-type cDNA. VEC expression and clustering upregulated endothelial-specific genes with key roles in vascular stabilization including claudin-5, vascular endothelial-protein tyrosine phosphatase (VE-PTP), and von Willebrand factor (vWf). Mechanistically, VEC exerts this effect by inhibiting polycomb protein activity on the specific gene promoters. This is achieved by preventing nuclear translocation of FoxO1 (Forkhead box protein O1) and ß-catenin, which contribute to PRC2 (polycomb repressive complex-2) binding to promoter regions of claudin-5, VE-PTP, and vWf. VEC/ß-catenin complex also sequesters a core subunit of PRC2 (Ezh2 [enhancer of zeste homolog 2]) at the cell membrane, preventing its nuclear translocation. Inhibition of Ezh2/VEC association increases Ezh2 recruitment to claudin-5, VE-PTP, and vWf promoters, causing gene downregulation. RNA sequencing comparison of VEC-null and VEC-positive cells suggested a more general role of VEC in activating endothelial genes and triggering a vascular stability-related gene expression program. In pathological angiogenesis of human ovarian carcinomas, reduced VEC expression paralleled decreased levels of claudin-5 and VE-PTP. CONCLUSIONS: These data extend the knowledge of polycomb-mediated regulation of gene expression to endothelial cell differentiation and vessel maturation. The identified mechanism opens novel therapeutic opportunities to modulate endothelial gene expression and induce vascular normalization through pharmacological inhibition of the polycomb-mediated repression system.


Subject(s)
Antigens, CD/biosynthesis , Cadherins/biosynthesis , Endothelium, Vascular/metabolism , Epigenesis, Genetic/physiology , Animals , Antigens, CD/genetics , Cadherins/genetics , Cell Membrane/genetics , Cell Membrane/metabolism , Cell Membrane/ultrastructure , Endothelium, Vascular/ultrastructure , Gene Expression , HEK293 Cells , Humans , Mice , Polycomb-Group Proteins/metabolism , Protein Binding/physiology
12.
Mol Neurodegener ; 12(1): 16, 2017 02 13.
Article in English | MEDLINE | ID: mdl-28193238

ABSTRACT

BACKGROUND: Neuroinflammation is associated with a wide range of neurodegenerative disorders, however the specific contribution to individual disease pathogenesis and selective neuronal cell death is not well understood. Inflammatory cerebellar ataxias are neurodegenerative diseases occurring in various autoimmune/inflammatory conditions, e.g. paraneoplastic syndromes. However, how inflammatory insults can cause selective cerebellar neurodegeneration in the context of these diseases remains open, and appropriate animal models are lacking. A key regulator of neuroinflammatory processes is the NF-κB signalling pathway, which is activated by the IκB kinase 2 (IKK2) in response to various pathological conditions. Importantly, its activation is sufficient to initiate neuroinflammation on its own. METHODS: To investigate the contribution of IKK/NF-κB-mediated neuroinflammation to neurodegeneration, we established conditional mouse models of cerebellar neuroinflammation, which depend either on the tetracycline-regulated expression of IKK2 in astrocytes or Cre-recombination based IKK2 activation in Bergmann glia. RESULTS: We demonstrate that IKK2 activation for a limited time interval in astrocytes is sufficient to induce neuroinflammation, astrogliosis and loss of Purkinje neurons, resembling the pathogenesis of inflammatory cerebellar ataxias. We identified IKK2-driven irreversible dysfunction of Bergmann glia as critical pathogenic event resulting in Purkinje cell loss. This was independent of Lipocalin 2, an acute phase protein secreted by reactive astrocytes and well known to mediate neurotoxicity. Instead, downregulation of the glutamate transporters EAAT1 and EAAT2 and ultrastructural alterations suggest an excitotoxic mechanism of Purkinje cell degeneration. CONCLUSIONS: Our results suggest a novel pathogenic mechanism how diverse inflammatory insults can cause inflammation/autoimmune-associated cerebellar ataxias. Disease-mediated elevation of danger signals like TLR ligands and inflammatory cytokines in the cerebellum activates IKK2/NF-κB signalling in astrocytes, which as a consequence triggers astrogliosis-like activation of Bergmann glia and subsequent non-cell-autonomous Purkinje cell degeneration. Notably, the identified hit and run mechanism indicates only an early window for therapeutic interventions.


Subject(s)
Astrocytes/metabolism , Cerebellum/metabolism , I-kappa B Kinase/metabolism , Neurodegenerative Diseases/metabolism , Neuroglia/metabolism , Animals , Disease Models, Animal , Gliosis/pathology , Inflammation/metabolism , Mice, Transgenic , NF-kappa B/metabolism , Neurodegenerative Diseases/pathology
13.
Haematologica ; 101(7): 861-71, 2016 07.
Article in English | MEDLINE | ID: mdl-27056922

ABSTRACT

Strong FOXP1 protein expression is a poor risk factor in diffuse large B-cell lymphoma and has been linked to an activated B-cell-like subtype, which preferentially expresses short FOXP1 (FOXP1S) proteins. However, both short isoform generation and function are incompletely understood. Here we prove by mass spectrometry and N-terminal antibody staining that FOXP1S proteins in activated B-cell-like diffuse large B-cell lymphoma are N-terminally truncated. Furthermore, a rare strongly FOXP1-expressing population of normal germinal center B cells lacking the N-terminus of the regular long protein (FOXP1L) was identified. Exon-targeted silencing and transcript analyses identified three alternate 5' non-coding exons [FOXP1-Ex6b(s), FOXP1-Ex7b and FOXP1-Ex7c], downstream of at least two predicted promoters, giving rise to FOXP1S proteins. These were differentially controlled by B-cell activation and methylation, conserved in murine lymphoma cells, and significantly correlated with FOXP1S protein expression in primary diffuse large B-cell lymphoma samples. Alternatively spliced isoforms lacking exon 9 (e.g. isoform 3) did not encode FOXP1S, and an alternate long human FOXP1 protein (FOXP1AL) likely generated from a FOXP1-Ex6b(L) transcript was detected. The ratio of FOXP1L:FOXP1S isoforms correlated with differential expression of plasmacytic differentiation markers in U-2932 subpopulations, and altering this ratio was sufficient to modulate CD19 expression in diffuse large B-cell lymphoma cell lines. Thus, the activity of multiple alternate FOXP1 promoters to produce multiple protein isoforms is likely to regulate B-cell maturation.


Subject(s)
B-Lymphocytes/metabolism , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Gene Expression Regulation, Neoplastic , Lymphoma, Large B-Cell, Diffuse/genetics , Promoter Regions, Genetic , Protein Interaction Domains and Motifs/genetics , Repressor Proteins/genetics , Repressor Proteins/metabolism , Alternative Splicing , Animals , Antigens, CD19/genetics , Antigens, CD19/metabolism , Cell Line, Tumor , Exons , Forkhead Transcription Factors/chemistry , Humans , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Lymphoma, Large B-Cell, Diffuse/pathology , Mice , Protein Isoforms , RNA, Messenger/genetics , RNA, Messenger/metabolism , Repressor Proteins/chemistry
14.
Cancer Cell ; 22(2): 167-79, 2012 Aug 14.
Article in English | MEDLINE | ID: mdl-22897848

ABSTRACT

In Burkitt lymphoma (BL), a germinal center B-cell-derived tumor, the pro-apoptotic properties of c-MYC must be counterbalanced. Predicting that survival signals would be delivered by phosphoinositide-3-kinase (PI3K), a major survival determinant in mature B cells, we indeed found that combining constitutive c-MYC expression and PI3K activity in germinal center B cells of the mouse led to BL-like tumors, which fully phenocopy human BL with regard to histology, surface and other markers, and gene expression profile. The tumors also accumulate tertiary mutational events, some of which are recurrent in the human disease. These results and our finding of recurrent PI3K pathway activation in human BL indicate that deregulated c-MYC and PI3K activity cooperate in BL pathogenesis.


Subject(s)
Burkitt Lymphoma/enzymology , Burkitt Lymphoma/pathology , Cell Transformation, Neoplastic/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Signal Transduction , Animals , B-Lymphocytes/enzymology , B-Lymphocytes/pathology , Base Sequence , Burkitt Lymphoma/genetics , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Enzyme Activation , Gene Expression Regulation, Neoplastic , Germinal Center/enzymology , Germinal Center/pathology , Humans , Mice , Mice, Inbred C57BL , Molecular Sequence Data , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-myc/genetics , Signal Transduction/genetics
15.
Immunity ; 33(5): 777-90, 2010 Nov 24.
Article in English | MEDLINE | ID: mdl-21093317

ABSTRACT

The myeloid differentiation primary response gene 88 (Myd88) is critical for protection against pathogens. However, we demonstrate here that MyD88 expression in B cells inhibits resistance of mice to Salmonella typhimurium infection. Selective deficiency of Myd88 in B cells improved control of bacterial replication and prolonged survival of the infected mice. The B cell-mediated suppressive pathway was even more striking after secondary challenge. Upon vaccination, mice lacking Myd88 in B cells became completely resistant against this otherwise lethal infection, whereas control mice were only partially protected. Analysis of immune defenses revealed that MyD88 signaling in B cells suppressed three crucial arms of protective immunity: neutrophils, natural killer cells, and inflammatory T cells. We further show that interleukin-10 is an essential mediator of these inhibitory functions of B cells. Collectively, our data identify a role for MyD88 and B cells in regulation of cellular mechanisms of protective immunity during infection.


Subject(s)
B-Lymphocytes/immunology , Myeloid Differentiation Factor 88/metabolism , Salmonella Infections, Animal/immunology , Salmonella typhimurium/immunology , Signal Transduction/immunology , Animals , Immunity, Innate , Interleukin-10/immunology , Killer Cells, Natural/immunology , Lymphocytes/immunology , Mice , Mice, Inbred C57BL , Myeloid Differentiation Factor 88/genetics , Neutrophils/immunology , Salmonella Vaccines/immunology
16.
Proc Natl Acad Sci U S A ; 105(31): 10883-8, 2008 Aug 05.
Article in English | MEDLINE | ID: mdl-18663224

ABSTRACT

BAFF-R-dependent activation of the alternative NF-kappaB pathway plays an essential role in mature B cell survival. Mutations leading to overexpression of NIK and deletion of the TRAF3 gene are implicated in human multiple myeloma. We show that overexpression of NIK in mouse B lymphocytes amplifies alternative NF-kappaB activation and peripheral B cell numbers in a BAFF-R-dependent manner, whereas uncoupling NIK from TRAF3-mediated control causes maximal p100 processing and dramatic hyperplasia of BAFF-R-independent B cells. NIK controls alternative NF-kappaB signaling by increasing the protein levels of its negative regulator TRAF3 in a dose-dependent fashion. This mechanism keeps NIK protein levels below detection even when they cause B cell hyperplasia, so that contributions of NIK to B cell pathologies can easily be overlooked.


Subject(s)
B-Cell Activating Factor/metabolism , B-Lymphocytes/metabolism , Gene Expression Regulation/immunology , Protein Serine-Threonine Kinases/metabolism , Signal Transduction/immunology , Animals , B-Cell Activation Factor Receptor/metabolism , B-Lymphocytes/immunology , Blotting, Northern , Blotting, Western , Cell Proliferation , Cell Survival/immunology , Flow Cytometry , Immunohistochemistry , Mice , NF-kappa B/metabolism , Protein Structure, Tertiary , TNF Receptor-Associated Factor 3/metabolism , NF-kappaB-Inducing Kinase
17.
Immunol Cell Biol ; 85(4): 315-22, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17438562

ABSTRACT

Gene expression from both parental alleles is beneficial by masking the effects of deleterious recessive mutations and by reducing the noise in gene expression in diploid organisms. However, a class of genes are expressed preferentially or strictly from a single allele. The selective advantage of avoiding biallelic expression is clear for allelic-excluded antigen receptor and odorant receptor genes, genes undergoing X-chromosome inactivation in females and parental genomic imprinted genes. In contrast, there is no clear biological rationale for the predominant and stochastic monoallelic expression of cytokine genes in the immune system, and the underlying mechanism is elusive and controversial. A clarification of the mechanism of predominant monoallelic expression would be instrumental in better understanding its eventual biological functional. This prompted the development of a quantitative framework that could describe the dynamics of the pattern of allele expression of the IL-10 gene, from which general quantitative insights could be gained. We report that the experimental observations on these patterns of allelic expression cannot be easily reconciled with a simple model of stochastic transcriptional activation, in which the two alleles are, at any time, equally competent for transcription. Instead, these observations call into action a general model of eukaryotic transcriptional regulation according to which the locus competence for transcription is dynamic, involving multiple, cooperative and stochastic modification steps. In this model, the probability that an allele becomes transcriptionally active is a function of the number of chromatin modifications that it accumulated. On the basis of the properties of this model, we argue that predominant monoallelic expression might have had no adaptive role, and may have evolved under indirect selection for low frequency of expressing cells.


Subject(s)
Alleles , Gene Expression Regulation , Interleukin-10/genetics , Models, Genetic , Animals , Flow Cytometry , Interleukin-10/immunology , Mice , Stochastic Processes , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...