Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Type of study
Publication year range
1.
Food Res Int ; 174(Pt 2): 113667, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37981379

ABSTRACT

Coffee cold brews have been gaining prominence and popularity among consumers worldwide. However, only a few studies have systematically analyzed their chemical composition or evaluated microbiological safety aspects. This study aimed to evaluate the survival of Bacillus cereus and Escherichia coli in cold brews prepared from roasted and ground Coffea arabica and C. canephora seeds using the following preparation methods: immersion without filter (INF), immersion in a cotton filter bag (ICF), vacuum (Vac.) and cold dripping (Drip.). Traditional hot dripping methods using filter paper (HDFP) and cotton filter (HDCF) were also tested for comparison. Water at 4 °C or 25 °C was intentionally contaminated (105 CFU/mL) with cells of Escherichia coli ATCC 25922 (EC) and Bacillus cereus F4433 (BC) before coffee extraction and refrigeration at 4 °C. Coffee concentrations of 5, 10, and 15% were tested. Analyses of pH, soluble solids, nine chlorogenic acids and two lactones (CGA), caffeine, trigonelline, and melanoidins were performed. Results were compared by ANOVA, followed by the Fisher's test, Pearson correlation, Variable Importance in Projection (VIP), and Cluster analyses, with a significance level of 5%. EC and BC were not detected (<10 CFU/mL and < 1 CFU/mL, respectively) after preparing C. arabica and C. canephora hot brews. In cold brews, the higher the extraction of soluble solids and bioactive compounds (with the highest occurring at 25 °C), the lower the counts of inoculated microorganisms during 24 h of storage. BC was not detected after 24 h of extraction and/or storage in the drinks obtained by ICF and Drip. at 5%, 10%, and 15% and INF and Vac. at 15%. EC was not detected in ICF and Drip. at 10 and 15%, and in INF at 15%. C. canephora brews exhibited higher levels of soluble solids, CGA, caffeine, and melanoidins than C. arabica brews. Based on these results, it can be concluded that in the absence of thermal processing as in hot brews, more concentrated cold brews, such as 15%, produced at 25 °C by dripping and immersion methods, are preferable for later dilution due to the higher content of soluble solids and bioactive compounds that contribute reducing the number of microorganisms in the beverage.


Subject(s)
Coffea , Coffea/chemistry , Coffee/chemistry , Caffeine/analysis , Water , Escherichia coli
2.
Food Chem ; 381: 132199, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35121320

ABSTRACT

Pomegranate seed oil (PSO) is rich in highly oxidizable bioactive conjugated linolenic acids (cLnA), limiting food applications. This study aimed to investigate the oxidative stability (room temperature for 90 days; 60 °C, for 10 days, vacuum-sealed or not), physical and morphological properties of PSO microparticles produced by complex coacervation (CC). An instant caffè latte beverage was formulated with PSO microparticles (30%) as a proof-of-application vehicle for the microparticles and physical properties were evaluated. CC was compared with spray drying. Although non-coacervated microparticles showed superior oxidative stability, coacervated microparticles were overall stable for 60 days and cLnA retention reduced 42% after γ-tocopherol exhaustion. Coacervated microparticles' structure was collapsed after 90 days. Storage under vacuum increased the oxidative stability at 60 °C. Microparticles showed high solubility and thermal stability, addition to the product promoted negligible changes in physical properties. This study brings new insights regarding cLnA stability and PSO application in food.


Subject(s)
Lythraceae , Pomegranate , Beverages , Plant Oils/chemistry , Seeds/chemistry
3.
Food Chem ; 372: 131228, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-34624782

ABSTRACT

Meat is considered a highly perishable food, and the interest in developing tools to monitor meat quality products has increased these years. A novel gelatin-ZnO-anthocyanin ternary nanocomposite film is proposed as a sensitive layer to meat quality monitoring in the present work. The incorporation of anthocyanin (ATH) on gelatin-ZnO (G-ZnO) film induced a sensitivity improvement of films towards ammonia vapor according to impedance measurements. G-ZnO-ATH film presented a good response (38.69 %) to the presence of ammonia vapor at 300 ppm. Also, good selectivity for ammonia was observed in the films. G-ZnO-ATH, applied to minced meat's quality monitoring at different storage conditions, showed a good performance, with a significant (p < 0.05) non-linear Spearman correlation between the response and the total volatile basic nitrogen released during meat spoilage for both storage conditions. The results suggest new perspectives in the developed film as a promising nanocomposite material for meat quality monitoring.


Subject(s)
Nanocomposites , Zinc Oxide , Anthocyanins , Food Packaging , Gelatin , Meat
4.
Polymers (Basel) ; 12(10)2020 Oct 14.
Article in English | MEDLINE | ID: mdl-33066458

ABSTRACT

A nacre-mimetic brick-and-mortar structure was used to develop a new flame-retardant technology. A second biomimetic approach was utilized to develop a non-flammable elastomeric benzoxazine for use as a polymer matrix that effectively adheres to the hydrophilic laponite nanofiller. A combination of laponite and benzoxazine is used to apply an ultra-high nanofiller content, thin nanocomposite coating on a polyurethane foam. The technology used is made environmentally friendly by eliminating the need to add any undesirable flame retardants, such as phosphorus additives or halogenated compounds. The very-thin coating on the polyurethane foam (PUF) is obtained through a single dip-coating. The structure of the polymer has been confirmed by proton nuclear magnetic resonance spectroscopy (1H NMR) and Fourier transform infrared spectroscopy (FTIR). The flammability of the polymer and nanocomposite was evaluated by heat release capacity using microscale combustion calorimetry (MCC). A material with heat release capacity (HRC) lower than 100 J/Kg is considered non-ignitable. The nanocomposite developed exhibits HRC of 22 J/Kg, which is well within the classification of a non-ignitable material. The cone calorimeter test was also used to investigate the flame retardancy of the nanocomposite's thin film on polyurethane foam. This test confirms that the second peak of the heat release rate (HRR) decreased 62% or completely disappeared for the coated PUF with different loadings. Compression tests show an increase in the modulus of the PUF by 88% for the 4 wt% coating concentration. Upon repeated modulus tests, the rigidity decreases, approaching the modulus of the uncoated PUF. However, the effect of this repeated mechanical loading does not significantly affect the flame retarding performance.

5.
Food Funct ; 11(9): 7561-7575, 2020 Sep 23.
Article in English | MEDLINE | ID: mdl-32820768

ABSTRACT

The United States is the largest coffee consuming country worldwide. Recently, in addition to cup quality, the focus on health promotion has increased significantly in the country, with launching of many brands with health claims, mainly highlighting the antioxidative and stimulating properties of the beverage. On the other hand, mycotoxins and, to a lesser extent, acrylamide, have raised concerns among consumers and health authorities. This study investigated the contents of the main bioactive compounds (caffeine, chlorogenic acids and their 1,5-γ-quinolactones, and trigonelline) in health performance coffees and compared them to those of conventional roasted coffees available on the U.S. market. The following categories were compared by ANOVA at p ≤ 0.05, followed by Fisher's test: 1 - health performance, 2 - gourmet and 3 - traditional, totaling 127 samples. As complementary results, the contents of acrylamide and ochratoxin A were evaluated in part of the samples (n = 58). The mean contents (g per 100 g) of bioactive compounds for categories 1 to 3, respectively, were 1.09, 1.11 and 1.07 for caffeine; 1.75, 1.88 and 1.34 for chlorogenic acids/lactones, and 0.63, 0.64 and 0.56 for trigonelline. The mean contents (µg kg-1) of acrylamide for categories 1 to 3, respectively, were 82, 71 and 85. Only about 7% of the evaluated samples presented quantifiable amounts of OTA and all of them were within the maximum limits established by health authorities. In general, the contents of bioactive and potentially harmful compounds were not consistently different among categories, with high and low individual amounts in all of them. Most health claims on labels related to the amount of bioactive compounds in health performance coffees were unjustified, suggesting the need for improvement in coffee labeling regulation in the U.S.


Subject(s)
Coffea/chemistry , Coffee/chemistry , Plant Preparations/analysis , Alkaloids/analysis , Antioxidants/analysis , Caffeine/analysis , Chlorogenic Acid/analysis , Chromatography, High Pressure Liquid , Coffee/economics , Humans , United States
6.
Soft Matter ; 16(28): 6662-6672, 2020 Jul 22.
Article in English | MEDLINE | ID: mdl-32626867

ABSTRACT

As an incipient but preeminent technology for multiphase nanomaterials/fluids, exact compatibilizing mechanisms of Janus particles in polymer blends and the consequent morphology remain unknown. The contributions of Janus nanorods to slip suppression and momentum transfer across the interface have been explored through dissipative particle dynamics simulations under shear flow at unentangled polymer-polymer interfaces. Rods have been then grafted with flexible polymer chains to unveil interfacial structure-property relationships at a molecular level when compared with flexible diblock copolymer surfactants. When Janus rods are sparsely grafted with necessarily longer grafts, they favor a greater degree of graft interpenetration with polymer phases. This yields less effective momentum transfer that impacts droplet coalescence processes; dynamic heterogeneities at complex interfaces; and helps map their efficiency as compatibilizers.

7.
Langmuir ; 36(15): 4184-4193, 2020 Apr 21.
Article in English | MEDLINE | ID: mdl-32200633

ABSTRACT

Taking advantage of both shape and chemical anisotropy on the same nanoparticle offers rich self-assembly possibilities for nanotechnology. Through dissipative particle dynamics calculations, in the present work, the directed assembly of Janus nanorod aggregates and their capability to assemble into metastable novel structures at an interfacial level have been assessed. Symmetric Janus rods become kinetically trapped and exhibit either parallel or antiparallel alignment with respect to their long axis (different compositions). This depends on several factors that have been mapped herein and that can be precisely tuned: Flory-Huggins interaction parameter χ between polymer phases; concentration; shear rate; and even aggregate shape. Ultimately, two different aggregate structures result from rod tumbling that are not observed under quiescent conditions: monolayer-like aggregates exhibiting trapped rods with antiparallel configuration; and stacked nanorod arrays similar to superlattice sheets. These different structures can be controlled by the likelihood with which tumbling Janus rods encounter other aggregate portions showing parallel alignment. Hence, the present study offers fundamental insight into relevant parameters that govern the directed assembly of Janus nanoparticles at an interfacial level. Novel applications may potentially derive from the resulting aggregate structures, such as peculiar displays and sensors.

8.
Eng Life Sci ; 19(4): 279-291, 2019 Apr.
Article in English | MEDLINE | ID: mdl-32625008

ABSTRACT

There is a great interest in increasing the levels of production of nanocellulose, either by adjusting production systems or by improving the raw material. Despite all the advantages and applications, nanocellulose still has a high cost compared to common fibers and to reverse this scenario the development of new, cheaper, and more efficient means of production is required. The market trend is to have an increase in the mass production of nanocellulose; there is a great expectation of world trade. In this sense, research in this sector is on the rise, because once the cost is not an obstacle to production, this material will have more and more market. Production of the cellulose fibers is determinant for the production of nanocellulose by a hydrolyzing agent with a reasonable yield. This work presents several aspects of this new material, mainly addressing the enzymatic pathway, presenting the hydrolysis conditions such as pH, biomass concentration, enzymatic loading, temperature, and time. Also, the commonly used characterization methods are presented, as well as aspects of the nanocellulose production market.

9.
Food Chem ; 263: 81-88, 2018 Oct 15.
Article in English | MEDLINE | ID: mdl-29784332

ABSTRACT

Whey acerola-flavoured drink was subjected to Ohmic Heating (OH) under different operational conditions (45, 60, 80 V at 60 Hz and 10, 100, 1000 Hz with 25 V, 65 °C/30 min) and conventional pasteurization (65 °C/30 min). Bioactive compounds (total phenolics, DPPH, FRAP, ACE levels), fatty acid profile, volatile compounds (CG-MS), thermal behaviors (DSC) and water mobility (TD-NMR) were performed. Reduction of frequency (1000-10 Hz) resulted in a lower bioactive compounds and antioxidant capacity of the samples, except for the DPPH values. Concerning the thermal behaviors, fatty acids profile and volatile compounds, different findings were observed as a function of the parameters used (voltage and frequency). In respect of TD-NMR parameters, OH led to a slightly reduction of the relaxation time when compared to the conventional treatment, suggesting more viscous beverages. Overall, OH may be interesting option to whey acerola-flavoured drink processing.


Subject(s)
Antioxidants/analysis , Beverages/analysis , Malpighiaceae/chemistry , Pasteurization/methods , Volatile Organic Compounds/analysis , Ascorbic Acid/analysis , Ascorbic Acid/chemistry , Fatty Acids/analysis , Flavoring Agents/chemistry , Heating/methods , Hot Temperature , Phenols/analysis , Viscosity , Water/chemistry , Whey/chemistry
10.
Compr Rev Food Sci Food Saf ; 17(3): 663-677, 2018 May.
Article in English | MEDLINE | ID: mdl-33350122

ABSTRACT

In the last decade, the use of multivariate statistical techniques developed for analytical chemistry has been adopted widely in food science and technology. Usually, chemometrics is applied when there is a large and complex dataset, in terms of sample numbers, types, and responses. The results are used for authentication of geographical origin, farming systems, or even to trace adulteration of high value-added commodities. In this article, we provide an extensive practical and pragmatic overview on the use of the main chemometrics tools in food science studies, focusing on the effects of process variables on chemical composition and on the authentication of foods based on chemical markers. Pattern recognition methods, such as principal component analysis and cluster analysis, have been used to associate the level of bioactive components with in vitro functional properties, although supervised multivariate statistical methods have been used for authentication purposes. Overall, chemometrics is a useful aid when extensive, multiple, and complex real-life problems need to be addressed in a multifactorial and holistic context. Undoubtedly, chemometrics should be used by governmental bodies and industries that need to monitor the quality of foods, raw materials, and processes when high-dimensional data are available. We have focused on practical examples and listed the pros and cons of the most used chemometric tools to help the user choose the most appropriate statistical approach for analysis of complex and multivariate data.

11.
Sensors (Basel) ; 16(12)2016 Dec 20.
Article in English | MEDLINE | ID: mdl-27999415

ABSTRACT

The innovative use of gelatin as a temperature sensor based on capacitance was studied at a temperature range normally used for meat cooking (20-80 °C). Interdigital electrodes coated by gelatin solution and two sensors of different thicknesses (38 and 125 µm) were studied between 300 MHz and 900 MHz. At 38 µm, the capacitance was adequately measured, but for 125 µm the slope capacitance versus temperature curve decreased before 900 MHz due to the electrothermal breakdown between 60 °C and 80 °C. Thus, for 125 µm, the capacitance was studied applying 600 MHz. Sensitivity at 38 µm at 868 MHz (0.045 pF/°C) was lower than 125 µm at 600 MHz (0.14 pF/°C), influencing the results in the simulation (temperature range versus time) of meat cooking; at 125 µm, the sensitivity was greater, mainly during chilling steps. The potential of gelatin as a temperature sensor was demonstrated, and a balance between thickness and frequency should be considered to increase the sensitivity.

12.
Carbohydr Polym ; 151: 500-510, 2016 Oct 20.
Article in English | MEDLINE | ID: mdl-27474594

ABSTRACT

The influence of encapsulating carbohydrates (EC) with varying properties on the technological and functional properties of jussara pulp microparticles produced by spray drying were evaluated using experimental design. Microparticles produced with sodium octenyl succinate (OSA) starch at 0.5 core to EC ratio and with mixtures of inulin and maltodextrin at 1.0 and 2.0 core to EC ratio showed darker color, and higher anthocyanins contents and antioxidant activity. Seven microparticles showing high water solubility and desirable surface morphology. Hygroscopicity (10.7% and 11.5%) and wettability (41s and 43s) were improved when OSA starch and mixtures of inulin and maltodextrin were used. The anthocyanins contents and color of the microparticles did not change when exposed to light at 50°C for 38days. Finally, microparticles produced at 1.0 core to EC ratio with 2/3 OSA starch, 1/6 inulin and 1/6 maltodextrin were selected. These microparticles may be applied as colorant in numerous foods, whilst adding prebiotic fiber and anthocyanins.


Subject(s)
Euterpe , Food Coloring Agents/chemistry , Inulin/chemistry , Plant Preparations/chemistry , Polysaccharides/chemistry , Starch/chemistry , Anthocyanins/chemistry , Fruit/chemistry
13.
Talanta ; 155: 222-8, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27216677

ABSTRACT

The aim of this work was to study the feasibility of producing an egg matrix candidate reference material for salinomycin. Preservation techniques investigated were freeze-drying and spray drying dehydration. Homogeneity and stability studies of the produced batches were conducted according to ISO Guides 34 and 35. The results showed that all produced batches were homogeneous and both freeze-drying and spray drying techniques were suitable for matrix dehydrating, ensuring the material stability. In order to preserve the material integrity, it must be transported within the temperature range of -20 up to 25°C. The results constitute an important step towards the development of an egg matrix reference material for salinomycin is possible.


Subject(s)
Agriculture/standards , Eggs , Ether/chemistry , Ionophores/chemistry , Pyrans/chemistry , Accreditation , Animals , Chickens , Feasibility Studies , Freeze Drying , Ionophores/pharmacology , Pyrans/pharmacology , Reference Standards
14.
Crit Rev Food Sci Nutr ; 55(10): 1456-73, 2015.
Article in English | MEDLINE | ID: mdl-24918265

ABSTRACT

Tea presents a diverse phenolic composition which is responsible for its alleged biological activities, including the in vivo and in vitro antioxidant capacity. It is very usual to find researches applying statistical methods, such as analysis of variances (ANOVA) and linear Pearson correlation coefficients to analyze the strength of correlation between phenolic composition and the in vitro antioxidant activity of teas from Camellia sinensis (green, black, white, oolong, red, and yellow teas) and Ilex paraguariensis (Yerba-mate), which are the most produced and consumed types of teas. However, evidence has shown that these approaches are not as suitable as multivariate statistical methods once they do not depict nor show association among all results and variables simultaneously, making it difficult to understand clearly the data structure and patterns. Then, the objective of this work is to review and explain some univariate/bivariate and multivariate statistical techniques used to assess the association between phenolic compounds and the in vitro antioxidant activity of green, white, black, red, yellow, oolong and Yerba-mate teas. Moreover, this paper provides an overview on some assays used to estimate the in vitro antioxidant capacity of teas.


Subject(s)
Antioxidants/pharmacology , Camellia sinensis/chemistry , Ilex paraguariensis/chemistry , Phenols/pharmacology , Plant Extracts/pharmacology , Animals , Humans , In Vitro Techniques , Multivariate Analysis , Phenols/chemistry , Plant Extracts/chemistry
15.
Biomed Res Int ; 2013: 472626, 2013.
Article in English | MEDLINE | ID: mdl-23862146

ABSTRACT

The aim of this study was to characterize the penicillin-loaded microbeads composed of alginate and octenyl succinic anhydride (OSA) starch prepared by ionotropic pregelation with calcium chloride and to evaluate their in vitro drug delivery profile. The beads were characterized by size, scanning electron microscopy (SEM), zeta potential, swelling behavior, and degree of erosion. Also, the possible interaction between penicillin and biopolymers was investigated by differential scanning calorimetry (DSC), powder X-ray diffraction (XRD), and Fourier transform infrared (FTIR) analysis. The SEM micrograph results indicated a homogeneous drug distribution in the matrix. Also, based on thermal analyses (TGA/DSC), interactions were detected between microbead components. Although FTIR spectra of penicillin-loaded microbeads did not reveal the formation of new chemical entities, they confirmed the chemical drug stability. XRD patterns showed that the incorporated crystalline structure of penicillin did not significantly alter the primarily amorphous polymeric network. In addition, the results confirmed a prolonged penicillin delivery system profile. These results imply that alginate and OSA starch beads can be used as a suitable controlled-release carrier for penicillin.


Subject(s)
Alginates/chemistry , Anti-Bacterial Agents/pharmacology , Gels/chemistry , Microspheres , Starch/analogs & derivatives , Calorimetry, Differential Scanning , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Hydrogen-Ion Concentration , Kinetics , Microscopy, Electron, Scanning , Particle Size , Penicillin G/pharmacology , Powders , Spectroscopy, Fourier Transform Infrared , Starch/chemistry , Starch/ultrastructure , Static Electricity , Surface Properties , Thermogravimetry , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...