Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phytochemistry ; 130: 128-43, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27502926

ABSTRACT

The species of Helichrysum sect. Stoechadina (Asteraceae) are well-known for their secondary metabolite content and the characteristic aromatic bouquets. In the wild, populations exhibit a wide phenotypic plasticity which makes critical the circumscription of species and infraspecific ranks. Previous investigations on Helichrysum italicum complex focused on a possible phytochemical typification based on hydrodistilled essential oils. Aims of this paper are three-fold: (i) characterizing the volatile profiles of different populations, testing (ii) how these profiles vary across populations and (iii) how the phytochemical diversity may contribute in solving taxonomic problems. Nine selected Helichrysum populations, included within the H. italicum complex, Helichrysum litoreum and Helichrysum stoechas, were investigated. H. stoechas was chosen as outgroup for validating the method. After collection in the wild, plants were cultivated in standard growing conditions for over one year. Annual leafy shoots were screened in the post-blooming period for the emissions of volatile organic compounds (VOCs) by means of headspace solid phase microextraction coupled with gas-chromatography and mass spectrometry (HS-SPME-GC/MS). The VOC composition analysis revealed the production of overall 386 different compounds, with terpenes being the most represented compound class. Statistical data processing allowed the identification of the indicator compounds that differentiate the single populations, revealing the influence of the geographical provenance area in determining the volatile profiles. These results suggested the potential use of VOCs as valuable diacritical characters in discriminating the Helichrysum populations. In addition, the cross-validation analysis hinted the potentiality of this volatolomic study in the discrimination of the Helichrysum species and subspecies, highlighting a general congruence with the current taxonomic treatment of the genus. The consistency between this phytochemical approach and the traditional morphometrical analysis in studying the Helichrysum populations supports the validity of the VOC profile in solving taxonomic problems.


Subject(s)
Helichrysum/genetics , Volatile Organic Compounds/analysis , Gas Chromatography-Mass Spectrometry , Helichrysum/chemistry , Molecular Structure , Oils, Volatile/chemistry , Volatile Organic Compounds/chemistry
2.
Sci Total Environ ; 497-498: 491-498, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25151267

ABSTRACT

Acacia dealbata Link (Fabaceae) is one of the most invasive species in the Mediterranean ecosystems of Europe, Africa and America, where it has been proved to exert strong effects on soil and plant communities. In Italy A. dealbata has been largely used for ornamental and forestry purpose and is nowadays spreading in several areas. The present study was addressed to evaluate the impacts on soil chemical properties, soil microbial communities and understory plant communities and to assess the relationships among these compartments after the invasion of A. dealbata in a typical Mediterranean shrubland. Towards these aims, a soil and vegetation sampling was performed in Elba Island where A. dealbata is invading the sclerophyllous native vegetation. Three levels of invasion status were differentiated according to the gradient from invaded, to transitional and non-invaded vegetation. Quantitative and qualitative alterations of soil chemical properties and microbial communities (i.e. bacterial and fungal communities) and above-ground understory plant communities were found. In particular, the invaded soils had lower pH values than both the non-invaded and transitional ones. High differences were detected for both the total N and the inorganic fraction (NH4(+) and NO3(-)) contents, which showed the ranking: invaded>transitional>non-invaded soils. TOC and C/N ratio showed respectively higher and lower values in invaded than in non-invaded soils. Total plant covers, species richness and diversity in both the non-invaded and transitional subplots were higher than those in the invaded ones. The contribution of the nitrophilous species was significantly different among the three invasion statuses, with a strong increase going from native to transitional and invaded subplots. All these data confirm that A. dealbata modifies several compartments of the invaded ecosystems, from soil chemical properties to soil and plant microbial communities determining strong changes in the local ecosystem processes.


Subject(s)
Acacia , Introduced Species , Soil Microbiology , Africa , Italy , Mediterranean Region , Soil
3.
FEMS Microbiol Ecol ; 63(3): 383-400, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18194345

ABSTRACT

A previous analysis showed that Gammaproteobacteria could be the sole recoverable bacteria from surface-sterilized nodules of three wild species of Hedysarum. In this study we extended the analysis to eight Mediterranean native, uninoculated legumes never previously investigated regarding their root-nodule microsymbionts. The structural organization of the nodules was studied by light and electron microscopy, and their bacterial occupants were assessed by combined cultural and molecular approaches. On examination of 100 field-collected nodules, culturable isolates of rhizobia were hardly ever found, whereas over 24 other bacterial taxa were isolated from nodules. None of these nonrhizobial isolates could nodulate the original host when reinoculated in gnotobiotic culture. Despite the inability to culture rhizobial endosymbionts from within the nodules using standard culture media, a direct 16S rRNA gene PCR analysis revealed that most of these nodules contained rhizobia as the predominant population. The presence of nodular endophytes colocalized with rhizobia was verified by immunofluorescence microscopy of nodule sections using an Enterobacter-specific antibody. Hypotheses to explain the nonculturability of rhizobia are presented, and pertinent literature on legume endophytes is discussed.


Subject(s)
Bacteria/classification , Bacteria/growth & development , Fabaceae/microbiology , Nitrogen Fixation , Plant Roots/microbiology , Rhizobiaceae/growth & development , Algeria , Culture Media , DNA, Bacterial/analysis , Enterobacter/growth & development , Fabaceae/classification , Italy , Microscopy, Fluorescence , Plant Roots/ultrastructure , Polymerase Chain Reaction/methods , RNA, Ribosomal, 16S/genetics , Rhizobiaceae/classification , Rhizobiaceae/genetics , Rhizobiaceae/isolation & purification , Symbiosis
4.
J Plant Physiol ; 163(2): 128-40, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16399003

ABSTRACT

The content and relative variations of individual carotenoids during the leaflet development stages (I, II, III, A and P) of six species of Ceratozamia (Cycads) were investigated. There is an unusual, transitory and marked presence of six red stroma keto-carotenoids in the first development stages, while the thylakoidal carotenoids showed a low concentration during the same period. As no official A1cm1% coefficients were available, it was necessary to calculate these for the following stroma carotenoids: semi-beta-carotenone (major component), triphasiaxanthin, ceratoxanthin, ceratozamiaxanthin, kuesteriaxanthin and ceratoxanthone. The stroma keto-carotenoids, which reached the highest content in the first development stage (average of 78% of total carotenoids), were always present in the five species: C. fuscoviridis, C. robusta, C. spinosa, C. kuesteriana and C. hildae, but never in C. mexicana. From stage II, the stroma keto-carotenoids decreased and finally disappeared in the green adult leaflets. The thylakoidal carotenoids showed a minimum at stage III, and then increased to a maximum in the perennial leaflets. Among these, beta-carotene showed an anomalous and characteristic behaviour, being a minor component during leaflet development (from stage I to A). In stage P it was markedly exceeded not only by lutein but also by alpha-carotene, neoxanthin and violaxanthin, and in C. robusta also by lutein-5,6-epoxide. Additionally, the alpha/beta ratio in these species is unusual: it increased from 0.3-0.5 to 1.5-3.0 during leaflet development. Moreover, antheraxanthin amounts are very small, while zeaxanthin was present only in the evergreen leaflets of C. mexicana in small quantities. Lutein-5,6-epoxide represented more than 5% of thylakoidal carotenoids in the leaflets of all the species. A revision of the taxonomic rank of C. fuscoviridis is recommended.


Subject(s)
Carotenoids/metabolism , Plant Leaves/metabolism , Zamiaceae/metabolism , Chloroplasts/metabolism , Lutein/metabolism , Plant Leaves/growth & development , Thylakoids/metabolism , Xanthophylls/metabolism , Zamiaceae/growth & development , Zeaxanthins
5.
FEMS Microbiol Lett ; 233(2): 341-6, 2004 Apr 15.
Article in English | MEDLINE | ID: mdl-15063505

ABSTRACT

Cerato-platanin (CP), a protein of about 12.4 kDa from Ceratocystis fimbriata f. sp. platani (Cfp), accumulated in the mycelium and was located in the cell walls of Cfp ascospores, hyphae and conidia suggesting that this protein had a role in forming the fungal cell wall apart from the already known fact that it is secreted early in culture and elicits phytoalexin synthesis and/or plant cell death. The finding was obtained with three immunological techniques: a quantitative ELISA which determines the amount of CP in the mycelium, an immunofluorescence assay, and immunogold labelling to define the exact localization of CP in the Cfp cells.


Subject(s)
Ascomycota/metabolism , Fungal Proteins/metabolism , Hyphae/metabolism , Spores, Fungal/metabolism , Ascomycota/ultrastructure , Cell Wall/metabolism , Fluorescent Antibody Technique , Hyphae/ultrastructure , Microscopy, Immunoelectron , Spores, Fungal/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...