Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 6: 19789, 2016 Jan 27.
Article in English | MEDLINE | ID: mdl-26813099

ABSTRACT

Analgesics which affect prostaglandin (PG) pathways are used by most pregnant women. As germ cells (GC) undergo developmental and epigenetic changes in fetal life and are PG targets, we investigated if exposure of pregnant rats to analgesics (indomethacin or acetaminophen) affected GC development and reproductive function in resulting offspring (F1) or in the F2 generation. Exposure to either analgesic reduced F1 fetal GC number in both sexes and altered the tempo of fetal GC development sex-dependently, with delayed meiotic entry in oogonia but accelerated GC differentiation in males. These effects persisted in adult F1 females as reduced ovarian and litter size, whereas F1 males recovered normal GC numbers and fertility by adulthood. F2 offspring deriving from an analgesic-exposed F1 parent also exhibited sex-specific changes. F2 males exhibited normal reproductive development whereas F2 females had smaller ovaries and reduced follicle numbers during puberty/adulthood; as similar changes were found for F2 offspring of analgesic-exposed F1 fathers or mothers, we interpret this as potentially indicating an analgesic-induced change to GC in F1. Assuming our results are translatable to humans, they raise concerns that analgesic use in pregnancy could potentially affect fertility of resulting daughters and grand-daughters.


Subject(s)
Analgesics/pharmacology , Germ Cells/cytology , Germ Cells/drug effects , Maternal Exposure , Prenatal Exposure Delayed Effects , Reproduction/drug effects , Animals , Cell Differentiation , Female , Fetus , Male , Phenotype , Pregnancy , Prostaglandins/metabolism , Rats
2.
Environ Health Perspect ; 123(3): 223-30, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25514601

ABSTRACT

BACKGROUND: Phthalate exposure induces germ cell effects in the fetal rat testis. Although experimental models have shown that the human fetal testis is insensitive to the steroidogenic effects of phthalates, the effects on germ cells have been less explored. OBJECTIVES: We sought to identify the effects of phthalate exposure on human fetal germ cells in a dynamic model and to establish whether the rat is an appropriate model for investigating such effects. METHODS: We used immunohistochemistry, immunofluorescence, and quantitative real-time polymerase chain reaction to examine Sertoli and germ cell markers on rat testes and human fetal testis xenografts after exposure to vehicle or di(n-butyl) phthalate (DBP). Our study included analysis of germ cell differentiation markers, proliferation markers, and cell adhesion proteins. RESULTS: In both rat and human fetal testes, DBP exposure induced similar germ cell effects, namely, germ cell loss (predominantly undifferentiated), induction of multinucleated gonocytes (MNGs), and aggregation of differentiated germ cells, although the latter occurred rarely in the human testes. The mechanism for germ cell aggregation and MNG induction appears to be loss of Sertoli cell-germ cell membrane adhesion, probably due to Sertoli cell microfilament redistribution. CONCLUSIONS: Our findings provide the first comparison of DBP effects on germ cell number, differentiation, and aggregation in human testis xenografts and in vivo in rats. We observed comparable effects on germ cells in both species, but the effects in the human were muted compared with those in the rat. Nevertheless, phthalate effects on germ cells have potential implications for the next generation, which merits further study. Our results indicate that the rat is a human-relevant model in which to explore the mechanisms for germ cell effects.


Subject(s)
Cell Differentiation/drug effects , Dibutyl Phthalate/toxicity , Germ Cells/drug effects , Hazardous Substances/toxicity , Testis/drug effects , Animals , Fetus/drug effects , Humans , Immunohistochemistry , Male , Rats , Real-Time Polymerase Chain Reaction , Testis/embryology , Transplantation, Heterologous
SELECTION OF CITATIONS
SEARCH DETAIL
...