Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
1.
Blood Cancer J ; 14(1): 74, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684670

ABSTRACT

Smoldering multiple myeloma (SMM) precedes multiple myeloma (MM). The risk of progression of SMM patients is not uniform, thus different progression-risk models have been developed, although they are mainly based on clinical parameters. Recently, genomic predictors of progression have been defined for untreated SMM. However, the usefulness of such markers in the context of clinical trials evaluating upfront treatment in high-risk SMM (HR SMM) has not been explored yet, precluding the identification of baseline genomic alterations leading to drug resistance. For this reason, we carried out next-generation sequencing and fluorescent in-situ hybridization studies on 57 HR and ultra-high risk (UHR) SMM patients treated in the phase II GEM-CESAR clinical trial (NCT02415413). DIS3, FAM46C, and FGFR3 mutations, as well as t(4;14) and 1q alterations, were enriched in HR SMM. TRAF3 mutations were specifically associated with UHR SMM but identified cases with improved outcomes. Importantly, novel potential predictors of treatment resistance were identified: NRAS mutations and the co-occurrence of t(4;14) plus FGFR3 mutations were associated with an increased risk of biological progression. In conclusion, we have carried out for the first time a molecular characterization of HR SMM patients treated with an intensive regimen, identifying genomic predictors of poor outcomes in this setting.


Subject(s)
Biomarkers, Tumor , Disease Progression , Drug Resistance, Neoplasm , Mutation , Smoldering Multiple Myeloma , Humans , Male , Drug Resistance, Neoplasm/genetics , Female , Smoldering Multiple Myeloma/genetics , Biomarkers, Tumor/genetics , Middle Aged , Aged , High-Throughput Nucleotide Sequencing , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
2.
Cancer Med ; 12(16): 16788-16792, 2023 08.
Article in English | MEDLINE | ID: mdl-37403747

ABSTRACT

BACKGROUND: In myelodysplastic neoplasms (MDS), the 20q deletion [del(20q)] is a recurrent chromosomal abnormality that it has a high co-occurrence with U2AF1 mutations. Nevertheless, the prognostic impact of U2AF1 in these MDS patients is uncertain and the possible clinical and/or prognostic differences between the mutation type and the mutational burden are also unknown. METHODS: Our study analyzes different molecular variables in 100 MDS patients with isolated del(20q). RESULTS & CONCLUSIONS: We describe the high incidence and negative prognostic impact of U2AF1 mutations and other alterations such as in ASXL1 gene to identify prognostic markers that would benefit patients to receive earlier treatment.


Subject(s)
Myelodysplastic Syndromes , Splicing Factor U2AF , Humans , Incidence , Mutation , Myelodysplastic Syndromes/epidemiology , Myelodysplastic Syndromes/genetics , Prognosis , Splicing Factor U2AF/genetics
3.
Blood ; 133(11): 1205-1216, 2019 03 14.
Article in English | MEDLINE | ID: mdl-30602617

ABSTRACT

Recent evidence suggests that complex karyotype (CK) defined by the presence of ≥3 chromosomal aberrations (structural and/or numerical) identified by using chromosome-banding analysis (CBA) may be relevant for treatment decision-making in chronic lymphocytic leukemia (CLL). However, many challenges toward the routine clinical application of CBA remain. In a retrospective study of 5290 patients with available CBA data, we explored both clinicobiological associations and the clinical impact of CK in CLL. We found that patients with ≥5 abnormalities, defined as high-CK, exhibit uniformly dismal clinical outcomes, independently of clinical stage, TP53 aberrations (deletion of chromosome 17p and/or TP53 mutations [TP53abs]), and the expression of somatically hypermutated (M-CLL) or unmutated immunoglobulin heavy variable genes. Thus, they contrasted with CK cases with 3 or 4 aberrations (low-CK and intermediate-CK, respectively) who followed aggressive disease courses only in the presence of TP53abs. At the other end of the spectrum, patients with CK and +12,+19 displayed an exceptionally indolent profile. Building upon CK, TP53abs, and immunoglobulin heavy variable gene somatic hypermutation status, we propose a novel hierarchical model in which patients with high-CK exhibit the worst prognosis, whereas those with mutated CLL lacking CK or TP53abs, as well as CK with +12,+19, show the longest overall survival. Thus, CK should not be axiomatically considered unfavorable in CLL, representing a heterogeneous group with variable clinical behavior. High-CK with ≥5 chromosomal aberrations emerges as prognostically adverse, independent of other biomarkers. Prospective clinical validation is warranted before ultimately incorporating high-CK in risk stratification of CLL.


Subject(s)
Biomarkers, Tumor/genetics , Chromosome Aberrations , Cytogenetics/methods , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/mortality , Mutation , Aged , Female , Follow-Up Studies , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Male , Middle Aged , Prognosis , Retrospective Studies , Somatic Hypermutation, Immunoglobulin/genetics , Survival Rate , Tumor Suppressor Protein p53/genetics
7.
Blood Cancer J ; 5: e291, 2015 Mar 13.
Article in English | MEDLINE | ID: mdl-25768405

ABSTRACT

Nonsynonymous TP53 exon 4 single-nucleotide polymorphism (SNP), R72P, is linked to cancer and mutagen susceptibility. R72P associations with specific cancer risk, particularly hematological malignancies, have been conflicting. Myelodysplastic syndrome (MDS) with chromosome 5q deletion is characterized by erythroid hypoplasia arising from lineage-specific p53 accumulation resulting from ribosomal insufficiency. We hypothesized that apoptotically diminished R72P C-allele may influence predisposition to del(5q) MDS. Bone marrow and blood DNA was sequenced from 705 MDS cases (333 del(5q), 372 non-del(5q)) and 157 controls. Genotype distribution did not significantly differ between del(5q) cases (12.6% CC, 38.1% CG, 49.2% GG), non-del(5q) cases (9.7% CC, 44.6% CG, 45.7% GG) and controls (7.6% CC, 37.6% CG, 54.8% GG) (P=0.13). Allele frequency did not differ between non-del(5q) and del(5q) cases (P=0.91) but trended towards increased C-allele frequency comparing non-del(5q) (P=0.08) and del(5q) (P=0.10) cases with controls. Median lenalidomide response duration increased proportionate to C-allele dosage in del(5q) patients (2.2 (CC), 1.3 (CG) and 0.89 years (GG)). Furthermore, C-allele homozygosity in del(5q) was associated with prolonged overall and progression-free survival and non-terminal interstitial deletions that excluded 5q34, whereas G-allele homozygozity was associated with inferior outcome and terminal deletions involving 5q34 (P=0.05). These findings comprise the largest MDS R72P SNP analysis.


Subject(s)
Chromosome Deletion , Myelodysplastic Syndromes/genetics , Tumor Suppressor Protein p53/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Gene Frequency , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Mutation , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/pathology , Polymorphism, Single Nucleotide , Treatment Outcome
8.
Leukemia ; 28(4): 823-9, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24072100

ABSTRACT

Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a very rare disease that currently lacks genomic and genetic biomarkers to assist in its clinical management. We performed whole-exome sequencing (WES) of three BPDCN cases. Based on these data, we designed a resequencing approach to identify mutations in 38 selected genes in 25 BPDCN samples. WES revealed 37-99 deleterious gene mutations per exome with no common affected genes between patients, but with clear overlap in terms of molecular and disease pathways (hematological and dermatological disease). We identified for the first time deleterious mutations in IKZF3, HOXB9, UBE2G2 and ZEB2 in human leukemia. Target sequencing identified 29 recurring genes, ranging in prevalence from 36% for previously known genes, such as TET2, to 12-16% for newly identified genes, such as IKZF3 or ZEB2. Half of the tumors had mutations affecting either the DNA methylation or chromatin remodeling pathways. The clinical analysis revealed that patients with mutations in DNA methylation pathway had a significantly reduced overall survival (P=0.047). We provide the first mutational profiling of BPDCN. The data support the current WHO classification of the disease as a myeloid disorder and provide a biological rationale for the incorporation of epigenetic therapies for its treatment.


Subject(s)
Dendritic Cells/pathology , Exome , Lymphoma, Non-Hodgkin/genetics , Mutation , DNA Methylation , DNA-Binding Proteins/genetics , Dioxygenases , Homeodomain Proteins/genetics , Humans , Ikaros Transcription Factor/genetics , Proto-Oncogene Proteins/genetics , Repressor Proteins/genetics , Sequence Analysis, DNA , Zinc Finger E-box Binding Homeobox 2
10.
Br J Haematol ; 162(1): 74-86, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23614682

ABSTRACT

Lenalidomide is an effective drug in low-risk myelodysplastic syndromes (MDS) with isolated del(5q), although not all patients respond. Studies have suggested a role for TP53 mutations and karyotype complexity in disease progression and outcome. In order to assess the impact of complex karyotypes on treatment response and disease progression in 52 lenalidomide-treated patients with del(5q) MDS, conventional G-banding cytogenetics (CC), single nucleotide polymorphism array (SNP-A), and genomic sequencing methods were used. SNP-A analysis (with control sample, lymphocytes CD3+, in 30 cases) revealed 5q losses in all cases. Other recurrent abnormalities were infrequent and were not associated with lenalidomide responsiveness. Low karyotype complexity (by CC) and a high baseline platelet count (>280 × 10(9) /l) were associated with the achievement of haematological response (P = 0·020, P = 0·013 respectively). Unmutated TP53 status showed a tendency for haematological response (P = 0·061). Complete cytogenetic response was not observed in any of the mutated TP53 cases. By multivariate analysis, the most important predictor for lenalidomide treatment failure was a platelet count <280 × 10(9) /l (Odds Ratio = 6·17, P = 0·040). This study reveals the importance of a low baseline platelet count, karyotypic complexity and TP53 mutational status for response to lenalidomide treatment. It supports the molecular study of TP53 in MDS patients treated with lenalidomide.


Subject(s)
Chromosome Deletion , Chromosomes, Human, Pair 5 , Immunologic Factors/therapeutic use , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/genetics , Thalidomide/analogs & derivatives , Aged , Aged, 80 and over , Chromosome Banding , Disease Progression , Female , Humans , In Situ Hybridization, Fluorescence , Lenalidomide , Male , Middle Aged , Mutation , Myelodysplastic Syndromes/mortality , Polymorphism, Single Nucleotide , Thalidomide/therapeutic use , Treatment Outcome
11.
Arch Microbiol ; 195(3): 153-9, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23269498

ABSTRACT

A novel Gram-positive, aerobic, actinobacterial strain, CF5/5, was isolated from soil in the Sahara desert, Chad. It grew best at 20-35 °C and at pH 6.0-8.0 and with 0-4 % (w/v) NaCl, forming black-colored colonies. Chemotaxonomic and molecular characteristics of the isolate matched those described for members of the genus Geodermatophilus. The DNA G + C content was 75.9 mol%. The peptidoglycan contained meso-diaminopimelic acid; galactose and xylose were detected as diagnostic sugars. The main phospholipids were diphosphatidylglycerol, phosphatidylcholine, and phosphatidylinositol; MK-9(H(4)) was the dominant menaquinone. The major cellular fatty acids were: iso-C(16:0) and iso-C(15:0). The 16S rRNA gene showed 95.6-98.3 % sequence similarity with the other named members of the genus Geodermatophilus. Based on the polyphasic taxonomy data, the isolate is proposed to represent a novel species, Geodermatophilus saharensis with the type strain CF5/5(T) = DSM 45423 = CCUG 62813 = MTCC 11416.


Subject(s)
Actinomycetales/classification , Phylogeny , Silicon Dioxide , Soil Microbiology , Actinomycetales/chemistry , Actinomycetales/genetics , Actinomycetales/isolation & purification , Actinomycetales/ultrastructure , Cell Wall/chemistry , Chad , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Microscopy, Electron, Scanning , Molecular Sequence Data , RNA, Ribosomal, 16S/genetics , Species Specificity
12.
Oncogene ; 32(16): 2069-78, 2013 Apr 18.
Article in English | MEDLINE | ID: mdl-22689058

ABSTRACT

The EVI1 gene (3q26) codes for a transcription factor with important roles in normal hematopoiesis and leukemogenesis. High expression of EVI1 is a negative prognostic indicator of survival in acute myeloid leukemia (AML) irrespective of the presence of 3q26 rearrangements. However, the only known mechanisms that lead to EVI1 overexpression are 3q aberrations, and the MLL-ENL oncoprotein, which activates the transcription of EVI1 in hematopoietic stem cells. Our aim was to characterize the functional promoter region of EVI1, and to identify transcription factors involved in the regulation of this gene. Generation of seven truncated constructs and luciferase reporter assays allowed us to determine a 318-bp region as the minimal promoter region of EVI1. Site-directed mutagenesis and chromatin immunoprecipitation (ChIP) assays identified RUNX1 and ELK1 as putative transcription factors of EVI1. Furthermore, knockdown of RUNX1 and ELK1 led to EVI1 downregulation, and their overexpression to upregulation of EVI1. Interestingly, in a series of patient samples with AML at diagnosis, we found a significant positive correlation between EVI1 and RUNX1 at protein level. Moreover, we identified one of the roles of RUNX1 in the activation of EVI1 during megakaryocytic differentiation. EVI1 knockdown significantly inhibited the expression of megakaryocytic markers after treating K562 cells with TPA, as happens when knocking down RUNX1. In conclusion, we define the minimal promoter region of EVI1 and demonstrate that RUNX1 and ELK1, two proteins with essential functions in hematopoiesis, regulate EVI1 in AML. Furthermore, our results show that one of the mechanisms by which RUNX1 regulates the transcription of EVI1 is by acetylation of the histone H3 on its promoter region. This study opens new directions to further understand the mechanisms of EVI1 overexpressing leukemias.


Subject(s)
Core Binding Factor Alpha 2 Subunit/genetics , DNA-Binding Proteins/genetics , Leukemia, Myeloid, Acute/genetics , Proto-Oncogenes/genetics , Transcription Factors/genetics , ets-Domain Protein Elk-1/genetics , Acetylation , Base Sequence , Cell Differentiation/genetics , Cell Line, Tumor , Core Binding Factor Alpha 2 Subunit/biosynthesis , Core Binding Factor Alpha 2 Subunit/metabolism , DNA-Binding Proteins/metabolism , Histones/genetics , Histones/metabolism , Humans , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , MDS1 and EVI1 Complex Locus Protein , Megakaryocytes/cytology , Megakaryocytes/physiology , Molecular Sequence Data , Promoter Regions, Genetic , Transcription Factors/metabolism , Transcription, Genetic , Transfection , ets-Domain Protein Elk-1/metabolism
13.
Leukemia ; 27(4): 925-31, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23174883

ABSTRACT

Currently, multiple myeloma (MM) patients are broadly grouped into a non-hyperdiploid (nh-MM) group, highly enriched for IgH translocations, or into a hyperdiploid (h-MM) group, which is typically characterized by trisomies of some odd-numbered chromosomes. We compared the micro RNA (miRNA) expression profiles of these two groups and we identified 16 miRNAs that were downregulated in the h-MM group, relative to the nh-MM group. We found that target genes of the most differentially expressed miRNAs are directly involved in the pathogenesis of MM; specifically, the inhibition of hsa-miR-425, hsa-miR-152 and hsa-miR-24, which are all downregulated in h-MM, leads to the overexpression of CCND1, TACC3, MAFB, FGFR3 and MYC, which are the also the oncogenes upregulated by the most frequent IgH chromosomal translocations occurring in nh-MM. Importantly, we showed that the downregulation of these specific miRNAs and the upregulation of their targets also occur simultaneously in primary cases of h-MM. These data provide further evidence on the unifying role of cyclin D pathways deregulation as the key mechanism involved in the development of both groups of MM. Finally, they establish the importance of miRNA deregulation in the context of MM, thereby opening up the potential for future therapeutic approaches based on this molecular mechanism.


Subject(s)
Diploidy , Down-Regulation , Immunoglobulin Heavy Chains/genetics , MicroRNAs/genetics , Multiple Myeloma/genetics , Translocation, Genetic , Base Sequence , Blotting, Western , DNA Methylation , DNA Primers , Humans , Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction
14.
Extremophiles ; 16(6): 903-9, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23081798

ABSTRACT

A novel Gram-positive, aerobic, actinobacterial strain, CF5/4(T), was isolated in 2007 during an environmental screening of arid desert soil in Ouré Cassoni, Chad. The isolate grew best in a temperature range of 28-40 °C and at pH 6.0-8.5, with 0-1 % (w/v) NaCl, forming brown-coloured and nearly circular colonies on GYM agar. Chemotaxonomic and molecular characteristics of the isolate matched those described for members of the genus Geodermatophilus. The DNA G + C content of the novel strain was 75.9 mol %. The peptidoglycan contained meso-diaminopimelic acid as diagnostic diaminoacid. The main phospholipids were phosphatidylethanolamine, phosphatidylcholine, phosphatidylinositol, diphosphatidylglycerol and a small amount of phosphatidylglycerol; MK-9(H(4)) was identified as the dominant menaquinone and galactose as diagnostic sugar. The major cellular fatty acids were branched-chain saturated acids: iso-C(15:0) and iso-C(16:0). The 16S rRNA gene showed 96.2-98.3 % sequence identity with the three members of the genus Geodermatophilus: G. obscurus (96.2 %), G. ruber (96.5 %), and G. nigrescens (98.3 %). Based on the chemotaxonomic results, 16S rRNA gene sequence analysis and DNA-DNA hybridization with the type strain of G. nigrescens, the isolate is proposed to represent a novel species, Geodermatophilus arenarius (type strain CF5/4(T) = DSM 45418(T) = MTCC 11413(T) = CCUG 62763(T)).


Subject(s)
Actinomycetales/classification , Actinomycetales/isolation & purification , Geologic Sediments/microbiology , Actinomycetales/cytology , Actinomycetales/genetics , Africa, Northern , Bacterial Typing Techniques , Base Composition , Chad , Desert Climate , Geologic Sediments/chemistry , Phylogeny , RNA, Ribosomal, 16S/genetics , Silicon Dioxide
15.
Leukemia ; 26(6): 1329-37, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22289984

ABSTRACT

The AML1-ETO fusion protein, which is present in 10-15% of cases of acute myeloid leukemia, is known to repress myeloid differentiation genes through DNA binding and recruitment of chromatin-modifying proteins and transcription factors in target genes. ChIP-chip analysis of human hematopoietic stem/progenitor cells transduced with the AML1-ETO fusion gene enabled us to identify 1168 AML1-ETO target genes, 103 of which were co-occupied by histone deacetylase 1 (HDAC1) and had lost the hyperacetylation mark at histone H4, and 264 showed a K9 trimethylation at histone H3. Enrichment of genes involved in hematopoietic differentiation and in specific signaling pathways was observed in the presence of these epigenetic modifications associated with an 'inactive' chromatin status. Furthermore, AML1-ETO target genes had a significant correlation between the chromatin marks studied and transcriptional silencing. Interestingly, AML1 binding sites were absent on a large number of selected AML1-ETO promoters and an Sp1 binding site was found in over 50% of them. Reversible silencing induced by the fusion protein in the presence of AML1 and/or Sp1 transcription factor binding site was confirmed. Therefore, this study provides a global analysis of AML1-ETO functional chromatin modifications and identifies the important role of Sp1 in the DNA binding pattern of AML1-ETO, suggesting a role for Sp1-targeted therapy in this leukemia subtype.


Subject(s)
Chromatin/genetics , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Hematopoietic Stem Cells/metabolism , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Sp1 Transcription Factor/metabolism , Acetylation , Binding Sites , Cells, Cultured , Chromatin Immunoprecipitation , Core Binding Factor Alpha 2 Subunit/antagonists & inhibitors , Epigenesis, Genetic , Genomics , Hematopoietic Stem Cells/cytology , Histone Deacetylase 1/genetics , Histone Deacetylase 1/metabolism , Histones/metabolism , Humans , Oncogene Proteins, Fusion/antagonists & inhibitors , Promoter Regions, Genetic/genetics , RNA, Messenger/genetics , RUNX1 Translocation Partner 1 Protein , Real-Time Polymerase Chain Reaction , Sp1 Transcription Factor/antagonists & inhibitors , Sp1 Transcription Factor/genetics , Umbilical Cord/cytology , Umbilical Cord/metabolism
16.
Leukemia ; 26(7): 1517-26, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22307227

ABSTRACT

Histone deacetylases (HDACs) have been identified as therapeutic targets due to their regulatory function in chromatin structure and organization. Here, we analyzed the therapeutic effect of LBH589, a class I-II HDAC inhibitor, in acute lymphoblastic leukemia (ALL). In vitro, LBH589 induced dose-dependent antiproliferative and apoptotic effects, which were associated with increased H3 and H4 histone acetylation. Intravenous administration of LBH589 in immunodeficient BALB/c-RAG2(-/-)γc(-/-) mice in which human-derived T and B-ALL cell lines were injected induced a significant reduction in tumor growth. Using primary ALL cells, a xenograft model of human leukemia in BALB/c-RAG2(-/-)γc(-/-) mice was established, allowing continuous passages of transplanted cells to several mouse generations. Treatment of mice engrafted with T or B-ALL cells with LBH589 induced an in vivo increase in the acetylation of H3 and H4, which was accompanied with prolonged survival of LBH589-treated mice in comparison with those receiving vincristine and dexamethasone. Notably, the therapeutic efficacy of LBH589 was significantly enhanced in combination with vincristine and dexamethasone. Our results show the therapeutic activity of LBH589 in combination with standard chemotherapy in pre-clinical models of ALL and suggest that this combination may be of clinical value in the treatment of patients with ALL.


Subject(s)
Apoptosis/drug effects , Dexamethasone/pharmacology , Histone Deacetylase Inhibitors/pharmacology , Hydroxamic Acids/pharmacology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Vincristine/pharmacology , Animals , Antineoplastic Agents, Hormonal/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Combined Chemotherapy Protocols , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Proliferation/drug effects , DNA Methylation , DNA-Binding Proteins/physiology , Drug Synergism , Female , Gene Expression Profiling , Histones/metabolism , Humans , Immunoenzyme Techniques , Indoles , Mice , Mice, Inbred BALB C , Oligonucleotide Array Sequence Analysis , Panobinostat , Polymorphism, Single Nucleotide/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
18.
Haematologica ; 96(7): 980-6, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21459790

ABSTRACT

BACKGROUND: LMO2 is highly expressed at the most immature stages of lymphopoiesis. In T-lymphocytes, aberrant LMO2 expression beyond those stages leads to T-cell acute lymphoblastic leukemia, while in B cells LMO2 is also expressed in germinal center lymphocytes and diffuse large B-cell lymphomas, where it predicts better clinical outcome. The implication of LMO2 in B-cell acute lymphoblastic leukemia must still be explored. DESIGN AND METHODS: We measured LMO2 expression by real time RT-PCR in 247 acute lymphoblastic leukemia patient samples with cytogenetic data (144 of them also with survival and immunophenotypical data) and in normal hematopoietic and lymphoid cells. RESULTS: B-cell acute lymphoblastic leukemia cases expressed variable levels of LMO2 depending on immunophenotypical and cytogenetic features. Thus, the most immature subtype, pro-B cells, displayed three-fold higher LMO2 expression than pre-B cells, common-CD10+ or mature subtypes. Additionally, cases with TEL-AML1 or MLL rearrangements exhibited two-fold higher LMO2 expression compared to cases with BCR-ABL rearrangements or hyperdyploid karyotype. Clinically, high LMO2 expression correlated with better overall survival in adult patients (5-year survival rate 64.8% (42.5%-87.1%) vs. 25.8% (10.9%-40.7%), P= 0.001) and constituted a favorable independent prognostic factor in B-ALL with normal karyotype: 5-year survival rate 80.3% (66.4%-94.2%) vs. 63.0% (46.1%-79.9%) (P= 0.043). CONCLUSIONS: Our data indicate that LMO2 expression depends on the molecular features and the differentiation stage of B-cell acute lymphoblastic leukemia cells. Furthermore, assessment of LMO2 expression in adult patients with a normal karyotype, a group which lacks molecular prognostic factors, could be of clinical relevance.


Subject(s)
DNA-Binding Proteins/genetics , Gene Expression Regulation, Leukemic , Metalloproteins/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Adaptor Proteins, Signal Transducing , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , B-Lymphocyte Subsets/metabolism , Cell Differentiation/genetics , Cell Line, Tumor , Child , Child, Preschool , Humans , Immunophenotyping , Infant , Karyotyping , LIM Domain Proteins , Middle Aged , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/mortality , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Prognosis , Proto-Oncogene Proteins , Survival Analysis , Treatment Outcome , Young Adult
19.
Leukemia ; 25(4): 606-14, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21233840

ABSTRACT

Protein phosphatase 2A (PP2A) is a human tumor suppressor that inhibits cellular transformation by regulating the activity of several signaling proteins critical for malignant cell behavior. PP2A has been described as a potential therapeutic target in chronic myeloid leukemia, Philadelphia chromosome-positive acute lymphoblastic leukemia and B-cell chronic lymphocytic leukemia. Here, we show that PP2A inactivation is a recurrent event in acute myeloid leukemia (AML), and that restoration of PP2A phosphatase activity by treatment with forskolin in AML cells blocks proliferation, induces caspase-dependent apoptosis and affects AKT and ERK1/2 activity. Moreover, treatment with forskolin had an additive effect with Idarubicin and Ara-c, drugs used in standard induction therapy in AML patients. Analysis at protein level of the PP2A activation status in a series of patients with AML at diagnosis showed PP2A hyperphosphorylation in 78% of cases (29/37). In addition, we found that either deregulated expression of the endogenous PP2A inhibitors SET or CIP2A, overexpression of SETBP1, or downregulation of some PP2A subunits, might be contributing to PP2A inhibition in AML. In conclusion, our results show that PP2A inhibition is a common event in AML cells and that PP2A activators, such as forskolin or FTY720, could represent potential novel therapeutic targets in AML.


Subject(s)
Colforsin/therapeutic use , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology , Protein Phosphatase 2/metabolism , Apoptosis/drug effects , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Blotting, Western , Bone Marrow , Case-Control Studies , Caspases/metabolism , Cell Proliferation/drug effects , Enzyme Activation/drug effects , Female , Gene Expression Profiling , Humans , Immunoenzyme Techniques , Leukemia, Myeloid, Acute/metabolism , Male , Middle Aged , Oligonucleotide Array Sequence Analysis , Phosphorylation/drug effects , Prognosis , Protein Phosphatase 2/antagonists & inhibitors , Protein Phosphatase 2/genetics , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction , Tumor Cells, Cultured
20.
Leukemia ; 25(1): 110-20, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20882045

ABSTRACT

This cooperative study assessed prognostic factors for overall survival (OS) and risk of transformation to acute myeloid leukemia (AML) in 541 patients with de novo myelodysplastic syndrome (MDS) and deletion 5q. Additional chromosomal abnormalities were strongly related to different patients' characteristics. In multivariate analysis, the most important predictors of both OS and AML transformation risk were number of chromosomal abnormalities (P<0.001 for both outcomes), platelet count (P<0.001 and P=0.001, respectively) and proportion of bone marrow blasts (P<0.001 and P=0.016, respectively). The number of chromosomal abnormalities defined three risk categories for AML transformation (del(5q), del(5q)+1 and del(5q)+ ≥ 2 abnormalities) and two for OS (one group: del(5q) and del(5q)+1; and del(5q)+ ≥ 2 abnormalities, as the other one); with a median survival time of 58.0 and 6.8 months, respectively. Platelet count (P=0.001) and age (P=0.034) predicted OS in patients with '5q-syndrome'. This study demonstrates the importance of additional chromosomal abnormalities in MDS patients with deletion 5q, challenges the current '5q-syndrome' definition and constitutes a useful reference series to properly analyze the results of clinical trials in these patients.


Subject(s)
Chromosome Aberrations , Myelodysplastic Syndromes/genetics , Adult , Aged , Aged, 80 and over , Anemia, Macrocytic/genetics , Anemia, Macrocytic/mortality , Chromosome Deletion , Chromosomes, Human, Pair 5/genetics , Female , Humans , Karyotyping , Male , Middle Aged , Myelodysplastic Syndromes/mortality , Prognosis , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...