Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
1.
Haematologica ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38988266

ABSTRACT

The value of quantitative immunoprecipitation mass spectrometry (QIP-MS) to identify the M-protein is being investigated in patients with monoclonal gammopathies but no data are yet available in high-risk smoldering myeloma (HRsMM). We have therefore investigated QIP-MS to monitor peripheral residual disease (PRD) in 62 HRsMM patients enrolled in the GEM-CESAR trial. After 24 cycles of maintenance, detecting the M-protein by MS or clonal plasma cells by NGF identified cases with a significantly shorter median PFS (mPFS; MS: not reached vs 1,4 years, p=0.001; NGF: not reached vs 2 years, p=0.0002) but reaching CR+sCR did not discriminate patients with different outcome. With NGF as a reference, the combined results of NGF and MS showed a high negative predictive value (NPV) of MS: 81% overall and 73% at treatment completion. When sequential results were considered, sustained negativity by MS or NGF was associated with a very favorable outcome with a mPFS not yet reached vs 1.66 years and 2.18 years in cases never attaining PRD or minimal residual disease (MRD) negativity, respectively. We can thus conclude that 1) the standard response categories of the IMWG do not seem to be useful for treatment monitoring in HRsMM patients, 2) MS could be used as a non-invasive, clinical valuable tool with the capacity of guiding timely bone marrow evaluations (based on its high NPV with NGF as a reference) and 3) similarly to NGF, sequential results of MS are able identify a subgroup of HRsMM patients with long-term disease control. This study was registered at www.clinicaltrials.gov (ClinicalTrials.gov identifier: NCT02415413).

2.
Blood ; 144(2): 129-131, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990540
3.
Nat Commun ; 15(1): 5570, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956053

ABSTRACT

Despite the development of novel therapies for acute myeloid leukemia, outcomes remain poor for most patients, and therapeutic improvements are an urgent unmet need. Although treatment regimens promoting differentiation have succeeded in the treatment of acute promyelocytic leukemia, their role in other acute myeloid leukemia subtypes needs to be explored. Here we identify and characterize two lysine deacetylase inhibitors, CM-444 and CM-1758, exhibiting the capacity to promote myeloid differentiation in all acute myeloid leukemia subtypes at low non-cytotoxic doses, unlike other commercial histone deacetylase inhibitors. Analyzing the acetylome after CM-444 and CM-1758 treatment reveals modulation of non-histone proteins involved in the enhancer-promoter chromatin regulatory complex, including bromodomain proteins. This acetylation is essential for enhancing the expression of key transcription factors directly involved in the differentiation therapy induced by CM-444/CM-1758 in acute myeloid leukemia. In summary, these compounds may represent effective differentiation-based therapeutic agents across acute myeloid leukemia subtypes with a potential mechanism for the treatment of acute myeloid leukemia.


Subject(s)
Cell Differentiation , Epigenesis, Genetic , Histone Deacetylase Inhibitors , Leukemia, Myeloid, Acute , Humans , Cell Differentiation/drug effects , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Epigenesis, Genetic/drug effects , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Cell Line, Tumor , Acetylation/drug effects , Transcription Factors/metabolism , Transcription Factors/genetics , Gene Expression Regulation, Leukemic/drug effects , Animals
5.
Cancers (Basel) ; 16(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38672593

ABSTRACT

Essential thrombocythemia (ET) is a blood cancer caused by mutations in JAK2 and CALR. It is widely recognized that both mutations lead to the constitutive activation of JAK2/STAT signaling, although other JAK/STAT-independent pathogenic mechanisms triggered by these alterations have also been described in ET. In an attempt to study JAK2/STAT-independent mechanisms derived from CALR mutations, our research group created a C. elegans model with patient-like mutations in calreticulin that lacks JAK counterparts. The introduction of patient-like mutations in the calreticulin of C. elegans leads to an increase in the transcriptional expression of nhr-2, independently of JAK2/STAT activation. In the present study, we aim to verify if this mechanism is conserved in patients with ET harboring CALR mutations. To do so, we evaluated the expression of potential orthologs of nhr-2 in human cell lines of interest for the study, as well as in bone marrow (BM) or peripheral blood (PB) mononuclear cells from patients with CALR or JAK2 mutations. The results revealed that this mechanism is conserved in CALR-mutated ET patients, since CALR, but not JAK2 mutations, were associated with an overexpression of RXRA in patients with ET. The use of drugs targeting the activation or blockade of this target in the analyzed cell lines did not result in changes in cell viability. However, RXRA might be relevant in the disease, pointing to the need for future research testing retinoids and other drugs targeting RXRα for the treatment of ET patients.

6.
Haematologica ; 109(3): 877-887, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37646661

ABSTRACT

Upregulation of a cyclin D gene determined by expression microarrays is an almost universal event in multiple myeloma (MM), but this finding has not been properly confirmed at the protein level. For this reason, we carried out a quantitative analysis of cyclin D proteins using a capillary electrophoresis nanoimmunoassay in newly diagnosed MM patients. Exclusive expression of cyclin D1 and D2 proteins was detected in 54 of 165 (33%) and 30 of 165 (18%) of the MM patients, respectively. Of note, cyclin D1 or D2 proteins were undetectable in 41% of the samples. High levels of cyclin D1 protein were strongly associated with the presence of t(11;14) or 11q gains. Cyclin D2 protein was detected in all the cases bearing t(14;16), but in only 24% of patients with t(4;14). The presence of cyclin D2 was associated with shorter overall survival (hazard ratio =2.14; P=0.017), although patients expressing cyclin D2 protein, but without 1q gains, had a favorable prognosis. In conclusion, although one of the cyclins D is overexpressed at the mRNA level in almost all MM patients, in approximately half of the patients this does not translate into detectable protein. This suggests that cyclins D could not play an oncogenic role in a proportion of patients with MM (clinicaltrials gov. identifier: NCT01916252).


Subject(s)
Cyclin D1 , Multiple Myeloma , Humans , Cyclin D1/genetics , Cyclin D2/genetics , Multiple Myeloma/diagnosis , Multiple Myeloma/genetics , Gene Expression Profiling , Cyclin D
7.
Blood ; 143(7): 597-603, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38048552

ABSTRACT

ABSTRACT: The role of measurable residual disease (MRD) negativity as a biomarker to stop treatment is being investigated in transplant-eligible patients with multiple myeloma (MM). Thus, it is important to identify risk factors of MRD resurgence and/or progressive disease (PD) among patients achieving undetectable MRD to avoid undertreating them. Here, we studied 267 newly diagnosed transplant-eligible patients with MM enrolled in the GEM2012MENOS65 and GEM2014MAIN clinical trials who achieved MRD negativity by next-generation flow cytometry. After a median follow-up of 73 months since the first MRD negative assessment, 111 of the 267 (42%) patients showed MRD resurgence and/or PD. The only prognostic factors at diagnosis that predicted MRD resurgence and/or PD were an International Staging System (ISS) 3 and the presence of ≥0.01% circulating tumor cells (CTCs). Failure to achieve MRD negativity after induction also predicted higher risk of MRD resurgence and/or PD. Patients having 0 vs 1 vs ≥2 risk factors (ISS 3, ≥0.01% CTCs, and late MRD negativity) showed 5-year rates of MRD resurgence and/or PD of 16%, 33%, and 57%, respectively (P < .001). Thus, these easily measurable risk factors could help refine the selection of patients for whom treatment cessation after MRD negativity is being investigated in clinical trials. This trial was registered at www.clinicaltrials.gov as NCT01916252 and NCT02406144.


Subject(s)
Multiple Myeloma , Humans , Multiple Myeloma/therapy , Multiple Myeloma/drug therapy , Treatment Outcome , Risk Factors , Neoplasm, Residual/diagnosis
9.
Blood ; 141(13): 1500-1502, 2023 03 30.
Article in English | MEDLINE | ID: mdl-36995701
11.
Cancers (Basel) ; 15(2)2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36672386

ABSTRACT

Next-Generation Sequencing (NGS) implementation to perform accurate diagnosis in acute myeloid leukemia (AML) represents a major challenge for molecular laboratories in terms of specialization, standardization, costs and logistical support. In this context, the PETHEMA cooperative group has established the first nationwide diagnostic network of seven reference laboratories to provide standardized NGS studies for AML patients. Cross-validation (CV) rounds are regularly performed to ensure the quality of NGS studies and to keep updated clinically relevant genes recommended for NGS study. The molecular characterization of 2856 samples (1631 derived from the NGS-AML project; NCT03311815) with standardized NGS of consensus genes (ABL1, ASXL1, BRAF, CALR, CBL, CEBPA, CSF3R, DNMT3A, ETV6, EZH2, FLT3, GATA2, HRAS, IDH1, IDH2, JAK2, KIT, KRAS, MPL, NPM1, NRAS, PTPN11, RUNX1, SETBP1, SF3B1, SRSF2, TET2, TP53, U2AF1 and WT1) showed 97% of patients having at least one mutation. The mutational profile was highly variable according to moment of disease, age and sex, and several co-occurring and exclusion relations were detected. Molecular testing based on NGS allowed accurate diagnosis and reliable prognosis stratification of 954 AML patients according to new genomic classification proposed by Tazi et al. Novel molecular subgroups, such as mutated WT1 and mutations in at least two myelodysplasia-related genes, have been associated with an adverse prognosis in our cohort. In this way, the PETHEMA cooperative group efficiently provides an extensive molecular characterization for AML diagnosis and risk stratification, ensuring technical quality and equity in access to NGS studies.

12.
Leukemia ; 37(2): 339-347, 2023 02.
Article in English | MEDLINE | ID: mdl-36566271

ABSTRACT

Recent evidence suggests that the prognostic impact of gene mutations in patients with chronic lymphocytic leukemia (CLL) may differ depending on the immunoglobulin heavy variable (IGHV) gene somatic hypermutation (SHM) status. In this study, we assessed the impact of nine recurrently mutated genes (BIRC3, EGR2, MYD88, NFKBIE, NOTCH1, POT1, SF3B1, TP53, and XPO1) in pre-treatment samples from 4580 patients with CLL, using time-to-first-treatment (TTFT) as the primary end-point in relation to IGHV gene SHM status. Mutations were detected in 1588 (34.7%) patients at frequencies ranging from 2.3-9.8% with mutations in NOTCH1 being the most frequent. In both univariate and multivariate analyses, mutations in all genes except MYD88 were associated with a significantly shorter TTFT. In multivariate analysis of Binet stage A patients, performed separately for IGHV-mutated (M-CLL) and unmutated CLL (U-CLL), a different spectrum of gene alterations independently predicted short TTFT within the two subgroups. While SF3B1 and XPO1 mutations were independent prognostic variables in both U-CLL and M-CLL, TP53, BIRC3 and EGR2 aberrations were significant predictors only in U-CLL, and NOTCH1 and NFKBIE only in M-CLL. Our findings underscore the need for a compartmentalized approach to identify high-risk patients, particularly among M-CLL patients, with potential implications for stratified management.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Prognosis , Myeloid Differentiation Factor 88/genetics , Mutation , Phenotype
13.
Blood Adv ; 7(1): 167-173, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36240453

ABSTRACT

Clonal evolution in acute myeloid leukemia (AML) originates long before diagnosis and is a dynamic process that may affect survival. However, it remains uninvestigated during routine diagnostic workups. We hypothesized that the mutational status of bone marrow dysplastic cells and leukemic blasts, analyzed at the onset of AML using integrated multidimensional flow cytometry (MFC) immunophenotyping and fluorescence-activated cell sorting (FACS) with next-generation sequencing (NGS), could reconstruct leukemogenesis. Dysplastic cells were detected by MFC in 285 of 348 (82%) newly diagnosed patients with AML. Presence of dysplasia according to MFC and World Health Organization criteria had no prognostic value in older adults. NGS of dysplastic cells and blasts isolated at diagnosis identified 3 evolutionary patterns: stable (n = 12 of 21), branching (n = 4 of 21), and clonal evolution (n = 5 of 21). In patients achieving complete response (CR), integrated MFC and FACS with NGS showed persistent measurable residual disease (MRD) in phenotypically normal cell types, as well as the acquisition of genetic traits associated with treatment resistance. Furthermore, whole-exome sequencing of dysplastic and leukemic cells at diagnosis and of MRD uncovered different clonal involvement in dysplastic myelo-erythropoiesis, leukemic transformation, and chemoresistance. Altogether, we showed that it is possible to reconstruct leukemogenesis in ∼80% of patients with newly diagnosed AML, using techniques other than single-cell multiomics.


Subject(s)
Leukemia, Myeloid, Acute , Humans , Aged , Flow Cytometry/methods , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/complications , Prognosis , High-Throughput Nucleotide Sequencing
14.
Front Oncol ; 12: 1054458, 2022.
Article in English | MEDLINE | ID: mdl-36505804

ABSTRACT

Acute myeloid leukemia (AML) in the elderly remains a clinical challenge, with a five-year overall survival rate below 10%. The current ELN 2017 genetic risk classification considers cytogenetic and mutational characteristics to stratify fit AML patients into different prognostic groups. However, this classification is not validated for elderly patients treated with a non-intensive approach, and its performance may be suboptimal in this context. Indeed, the transcriptomic landscape of AML in the elderly has been less explored and it might help stratify this group of patients. In the current study, we analyzed the transcriptome of 224 AML patients > 65 years-old at diagnosis treated in the Spanish PETHEMA-FLUGAZA clinical trial in order to identify new prognostic biomarkers in this population. We identified a specific transcriptomic signature for high-risk patients with mutated TP53 or complex karyotype, revealing that low expression of B7H3 gene with high expression of BANP gene identifies a subset of high-risk AML patients surviving more than 12 months. This result was further validated in the BEAT AML cohort. This unique signature highlights the potential of transcriptomics to identify prognostic biomarkers in in elderly AML.

15.
Cancers (Basel) ; 14(20)2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36291952

ABSTRACT

Next-generation sequencing (NGS) has greatly improved our ability to detect the genomic aberrations occurring in multiple myeloma (MM); however, its transfer to routine clinical labs and its validation in clinical trials remains to be established. We designed a capture-based NGS targeted panel to identify, in a single assay, known genetic alterations for the prognostic stratification of MM. The NGS panel was designed for the simultaneous study of single nucleotide and copy number variations, insertions and deletions, chromosomal translocations and V(D)J rearrangements. The panel was validated using a cohort of 149 MM patients enrolled in the GEM2012MENOS65 clinical trial. The results showed great global accuracy, with positive and negative predictive values close to 90% when compared with available data from fluorescence in situ hybridization and whole-exome sequencing. While the treatments used in the clinical trial showed high efficacy, patients defined as high-risk by the panel had shorter progression-free survival (p = 0.0015). As expected, the mutational status of TP53 was significant in predicting patient outcomes (p = 0.021). The NGS panel also efficiently detected clonal IGH rearrangements in 81% of patients. In conclusion, molecular karyotyping using a targeted NGS panel can identify relevant prognostic chromosomal abnormalities and translocations for the clinical management of MM patients.

16.
Cancers (Basel) ; 14(15)2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35954380

ABSTRACT

Chromothripsis (cth) has been associated with a dismal outcome and poor prognosis factors in patients with chronic lymphocytic leukemia (CLL). Despite being correlated with high genome instability, previous studies have not assessed the role of cth in the context of genomic complexity. Herein, we analyzed a cohort of 33 CLL patients with cth and compared them against a cohort of 129 non-cth cases with complex karyotypes. Nine cth cases were analyzed using optical genome mapping (OGM). Patterns detected by genomic microarrays were compared and the prognostic value of cth was analyzed. Cth was distributed throughout the genome, with chromosomes 3, 6 and 13 being those most frequently affected. OGM detected 88.1% of the previously known copy number alterations and several additional cth-related rearrangements (median: 9, range: 3-26). Two patterns were identified: one with rearrangements clustered in the region with cth (3/9) and the other involving both chromothriptic and non-chromothriptic chromosomes (6/9). Cases with cth showed a shorter time to first treatment (TTFT) than non-cth patients (median TTFT: 2 m vs. 15 m; p = 0.013). However, when stratifying patients based on TP53 status, cth did not affect TTFT. Only TP53 maintained its significance in the multivariate analysis for TTFT, including cth and genome complexity defined by genomic microarrays (HR: 1.60; p = 0.029). Our findings suggest that TP53 abnormalities, rather than cth itself, underlie the poor prognosis observed in this subset.

17.
J Clin Oncol ; 40(27): 3151-3161, 2022 09 20.
Article in English | MEDLINE | ID: mdl-35666958

ABSTRACT

PURPOSE: Patients with multiple myeloma (MM) may show patchy bone marrow (BM) infiltration and extramedullary disease. Notwithstanding, quantification of plasma cells (PCs) continues to be performed in BM since the clinical translation of circulating tumor cells (CTCs) remains undefined. PATIENTS AND METHODS: CTCs were measured in peripheral blood (PB) of 374 patients with newly diagnosed MM enrolled in the GEM2012MENOS65 and GEM2014MAIN trials. Treatment included bortezomib, lenalidomide, and dexamethasone induction followed by autologous transplant, consolidation, and maintenance. Next-generation flow cytometry was used to evaluate CTCs in PB at diagnosis and measurable residual disease (MRD) in BM throughout treatment. RESULTS: CTCs were detected in 92% (344 of 374) of patients with newly diagnosed MM. The correlation between the percentages of CTCs and BM PCs was modest. Increasing logarithmic percentages of CTCs were associated with inferior progression-free survival (PFS). A cutoff of 0.01% CTCs showed an independent prognostic value (hazard ratio: 2.02; 95% CI, 1.3 to 3.1; P = .001) in multivariable PFS analysis including the International Staging System, lactate dehydrogenase levels, and cytogenetics. The combination of the four prognostic factors significantly improved risk stratification. Outcomes according to the percentage of CTCs and depth of response to treatment showed that patients with undetectable CTCs had exceptional PFS regardless of complete remission and MRD status. In all other cases with detectable CTCs, only achieving MRD negativity (and not complete remission) demonstrated a statistically significant increase in PFS. CONCLUSION: Evaluation of CTCs in PB outperformed quantification of BM PCs. The detection of ≥ 0.01% CTCs could be a new risk factor in novel staging systems for patients with transplant-eligible MM.


Subject(s)
Multiple Myeloma , Neoplastic Cells, Circulating , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Bortezomib/therapeutic use , Dexamethasone/therapeutic use , Humans , Lactate Dehydrogenases , Lenalidomide/therapeutic use , Multiple Myeloma/drug therapy , Neoplasm, Residual/drug therapy , Neoplastic Cells, Circulating/pathology
18.
Blood Cancer J ; 12(4): 76, 2022 04 25.
Article in English | MEDLINE | ID: mdl-35468898

ABSTRACT

The International Staging System (ISS) and the Revised International Staging System (R-ISS) are commonly used prognostic scores in multiple myeloma (MM). These methods have significant gaps, particularly among intermediate-risk groups. The aim of this study was to improve risk stratification in newly diagnosed MM patients using data from three different trials developed by the Spanish Myeloma Group. For this, we applied an unsupervised machine learning clusterization technique on a set of clinical, biochemical and cytogenetic variables, and we identified two novel clusters of patients with significantly different survival. The prognostic precision of this clusterization was superior to those of ISS and R-ISS scores, and appeared to be particularly useful to improve risk stratification among R-ISS 2 patients. Additionally, patients assigned to the low-risk cluster in the GEM05 over 65 years trial had a significant survival benefit when treated with VMP as compared with VTD. In conclusion, we describe a simple prognostic model for newly diagnosed MM whose predictions are independent of the ISS and R-ISS scores. Notably, the model is particularly useful in order to re-classify R-ISS score 2 patients in 2 different prognostic subgroups. The combination of ISS, R-ISS and unsupervised machine learning clusterization brings a promising approximation to improve MM risk stratification.


Subject(s)
Multiple Myeloma , Humans , Multiple Myeloma/diagnosis , Multiple Myeloma/drug therapy , Multiple Myeloma/epidemiology , Neoplasm Staging , Prognosis , Risk Assessment , Unsupervised Machine Learning
19.
Sci Adv ; 8(3): eabl4644, 2022 01 21.
Article in English | MEDLINE | ID: mdl-35044826

ABSTRACT

Normal cell counterparts of solid and myeloid tumors accumulate mutations years before disease onset; whether this occurs in B lymphocytes before lymphoma remains uncertain. We sequenced multiple stages of the B lineage in elderly individuals and patients with lymphoplasmacytic lymphoma, a singular disease for studying lymphomagenesis because of the high prevalence of mutated MYD88. We observed similar accumulation of random mutations in B lineages from both cohorts and unexpectedly found MYD88L265P in normal precursor and mature B lymphocytes from patients with lymphoma. We uncovered genetic and transcriptional pathways driving malignant transformation and leveraged these to model lymphoplasmacytic lymphoma in mice, based on mutated MYD88 in B cell precursors and BCL2 overexpression. Thus, MYD88L265P is a preneoplastic event, which challenges the current understanding of lymphomagenesis and may have implications for early detection of B cell lymphomas.


Subject(s)
Lymphoma, B-Cell , Lymphoma , Waldenstrom Macroglobulinemia , Aged , Animals , Humans , Lymphoma, B-Cell/metabolism , Mice , Mutation , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Waldenstrom Macroglobulinemia/diagnosis , Waldenstrom Macroglobulinemia/genetics , Waldenstrom Macroglobulinemia/pathology
20.
Clin Cancer Res ; 28(12): 2598-2609, 2022 06 13.
Article in English | MEDLINE | ID: mdl-35063966

ABSTRACT

PURPOSE: Undetectable measurable residual disease (MRD) is a surrogate of prolonged survival in multiple myeloma. Thus, treatment individualization based on the probability of a patient achieving undetectable MRD with a singular regimen could represent a new concept toward personalized treatment, with fast assessment of its success. This has never been investigated; therefore, we sought to define a machine learning model to predict undetectable MRD at the onset of multiple myeloma. EXPERIMENTAL DESIGN: This study included 487 newly diagnosed patients with multiple myeloma. The training (n = 152) and internal validation cohorts (n = 149) consisted of 301 transplant-eligible patients with active multiple myeloma enrolled in the GEM2012MENOS65 trial. Two external validation cohorts were defined by 76 high-risk transplant-eligible patients with smoldering multiple myeloma enrolled in the Grupo Español de Mieloma(GEM)-CESAR trial, and 110 transplant-ineligible elderly patients enrolled in the GEM-CLARIDEX trial. RESULTS: The most effective model to predict MRD status resulted from integrating cytogenetic [t(4;14) and/or del(17p13)], tumor burden (bone marrow plasma cell clonality and circulating tumor cells), and immune-related biomarkers. Accurate predictions of MRD outcomes were achieved in 71% of cases in the GEM2012MENOS65 trial (n = 214/301) and 72% in the external validation cohorts (n = 134/186). The model also predicted sustained MRD negativity from consolidation onto 2 years maintenance (GEM2014MAIN). High-confidence prediction of undetectable MRD at diagnosis identified a subgroup of patients with active multiple myeloma with 80% and 93% progression-free and overall survival rates at 5 years. CONCLUSIONS: It is possible to accurately predict MRD outcomes using an integrative, weighted model defined by machine learning algorithms. This is a new concept toward individualized treatment in multiple myeloma. See related commentary by Pawlyn and Davies, p. 2482.


Subject(s)
Multiple Myeloma , Aged , Biomarkers , Humans , Machine Learning , Multiple Myeloma/diagnosis , Multiple Myeloma/pathology , Multiple Myeloma/therapy , Neoplasm, Residual/diagnosis , Survival Rate
SELECTION OF CITATIONS
SEARCH DETAIL
...