Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Animals (Basel) ; 13(18)2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37760211

ABSTRACT

Single-cell protein from torula yeast (Cyberlindnera jadinii) grown on lignocellulosic biomass has been proven to be an excellent alternative protein source for animal feed. This study aimed to evaluate the amino acid (AA) digestibility by estimating intestinal absorption from three yeast-based ingredients, produced by cultivating C. jadinii on hydrolysate, using either mixed woody species (drum- (WDI) or spray-dried (WSI)) or corn dextrose (drum-dried (DDI)) as the carbon source. Further, the protective effect of intestinal digests on activated THP1-Blue™-induced epithelial damage and cytokine profile was evaluated. Total protein content from these three ingredients ranged from 34 to 45%, while the AA dialysis showed an estimated bioaccessibility between 41 and 58%, indicating good digestibility of all test products. A protective effect against epithelial-induced damage was observed for two of the three tested products. Torula yeast cultivated on wood and drum-dried (WDI) and torula yeast cultivated on wood and spray-dried (WSI) significantly increased transepithelial electrical resistance (TEER) values (111-147%, p < 0.05), recovering the epithelial barrier from the inflammation-induced damage in a dose-dependent manner. Further, WSI digests significantly reduced IL8 (250.8 ± 28.1 ng/mL), IL6 (237.9 ± 1.8 pg/mL) and TNF (2797.9 ± 216.3 pg/mL) compared to the blank control (IL8 = 485.7 ± 74.4 ng/mL, IL6 = 478.7 ± 58.9 pg/mL; TNF = 4273.5 ± 20.9 pg/mL) (p < 0.05). These results align with previous in vivo studies, supporting torula yeast-based ingredients as a high-quality protein source for pigs, protecting the intestinal barrier from inflammatory damage, and reducing the pro-inflammatory response. We provided novel insights into the mechanisms behind the health improvement of pigs fed on torula yeast-based ingredients, with potential applications for designing nutritional interventions to recover intestinal homeostasis during critical production periods, such as weaning.

2.
Int J Mol Sci ; 24(6)2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36982942

ABSTRACT

Modulation of the gut microbiota is a trending strategy to improve health. While butyrate has been identified as a key health-related microbial metabolite, managing its supply to the host remains challenging. Therefore, this study investigated the potential to manage butyrate supply via tributyrin oil supplementation (TB; glycerol with three butyrate molecules) using the ex vivo SIFR® (Systemic Intestinal Fermentation Research) technology, a highly reproducible, in vivo predictive gut model that accurately preserves in vivo-derived microbiota and enables addressing interpersonal differences. Dosing 1 g TB/L significantly increased butyrate with 4.1 (±0.3) mM, corresponding with 83 ± 6% of the theoretical butyrate content of TB. Interestingly, co-administration of Limosilactobacillus reuteri ATCC 53608 (REU) and Lacticaseibacillus rhamnosus ATCC 53103 (LGG) markedly enhanced butyrate to levels that exceeded the theoretical butyrate content of TB (138 ± 11% for REU; 126 ± 8% for LGG). Both TB + REU and TB + LGG stimulated Coprococcus catus, a lactate-utilizing, butyrate-producing species. The stimulation of C. catus with TB + REU was remarkably consistent across the six human adults tested. It is hypothesized that LGG and REU ferment the glycerol backbone of TB to produce lactate, a precursor of butyrate. TB + REU also significantly stimulated the butyrate-producing Eubacterium rectale and Gemmiger formicilis and promoted microbial diversity. The more potent effects of REU could be due to its ability to convert glycerol to reuterin, an antimicrobial compound. Overall, both the direct butyrate release from TB and the additional butyrate production via REU/LGG-mediated cross-feeding were highly consistent. This contrasts with the large interpersonal differences in butyrate production that are often observed upon prebiotic treatment. Combining TB with LGG and especially REU is thus a promising strategy to consistently supply butyrate to the host, potentially resulting in more predictable health benefits.


Subject(s)
Lacticaseibacillus rhamnosus , Limosilactobacillus reuteri , Probiotics , Adult , Humans , Lacticaseibacillus , Butyrates/metabolism , Glycerol/metabolism
3.
Sci Rep ; 12(1): 10475, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35729185

ABSTRACT

Spondyloarthritis is a group of chronic inflammatory diseases that primarily affects axial or peripheral joints and is frequently associated with inflammation at non-articular sites. The disease is multifactorial, involving genetics, immunity and environmental factors, including the gut microbiota. In vivo, microbiome contributions are difficult to assess due to the multifactorial disease complexity. In a proof-of-concept approach, we therefore used a triple coculture model of immune-like, goblet and epithelial cells to investigate whether we could detect a differential impact from spondyloarthritis- vs. healthy-derived gut microbiota on host cell response. Despite their phylogenetic resemblance, flow cytometry-based phenotypic clustering revealed human-derived gut microbiota from healthy origin to cluster together and apart from spondyloarthritis donors. At host level, mucus production was higher upon exposure to healthy microbiota. Pro-inflammatory cytokine responses displayed more inter-individual variability in spondyloarthritis than in healthy donors. Interestingly, the high dominance in the initial sample of one patient of Prevotella, a genus previously linked to spondyloarthritis, resulted in the most differential host response upon 16 h host-microbe coincubation. While future research should further focus on inter-individual variability by using gut microbiota from a large cohort of patients, this study underscores the importance of the gut microbiota during the SpA disease course.


Subject(s)
Gastrointestinal Microbiome , Spondylarthritis , Coculture Techniques , Humans , Individuality , Phylogeny
4.
FASEB J ; 35(12): e21992, 2021 12.
Article in English | MEDLINE | ID: mdl-34719821

ABSTRACT

The colonic epithelial barrier is vital to preserve gut and host health by maintaining the immune homeostasis between host and microbes. The mechanisms underlying beneficial or harmful host-microbe interactions are poorly understood and impossible to study in vivo given the limited accessibility and ethical constraints. Moreover, existing in vitro models lack the required cellular complexity for the routine, yet profound, analysis of the intricate interplay between different types of host and microbial cells. We developed and characterized a broadly applicable, easy-to-handle in vitro triple coculture model that combines chemically-induced macrophage-like, goblet and epithelial cells covered by a mucus layer, which can be coincubated with complex human-derived gut microbiota samples for 16 h. Comparison with a standard epithelial monolayer model revealed that triple cocultures produce thicker mucus layers, morphologically organize in a network and upon exposure to human-derived gut microbiota samples, respond via pro-inflammatory cytokine production. Both model systems, however, were not suffering from cytotoxic stress or different microbial loads, indicating that the obtained endpoints were caused by the imposed conditions. Addition of the probiotic Lactobacillus rhamnosus GG to assess its immunomodulating capacity in the triple coculture slightly suppressed pro-inflammatory cytokine responses, based on transcriptomic microarray analyses. TNF conditioning of the models prior to microbial exposure did not cause shifts in cytokines, suggesting a strong epithelial barrier in which TNF did not reach the basolateral side. To conclude, the triple coculture model is tolerable towards manipulations and allows to address mechanistic host-microbe research questions in a stable in vitro environment.


Subject(s)
Coculture Techniques/methods , Colon/immunology , Epithelial Cells/immunology , Gastrointestinal Microbiome , Host Microbial Interactions , Intestinal Mucosa/immunology , Macrophages/immunology , Colon/cytology , Colon/metabolism , Colon/microbiology , Epithelial Cells/cytology , Epithelial Cells/metabolism , Epithelial Cells/microbiology , Humans , Intestinal Mucosa/cytology , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Lacticaseibacillus rhamnosus/physiology , Macrophages/cytology , Macrophages/metabolism , Macrophages/microbiology , Transcriptome
5.
Sci Rep ; 10(1): 16939, 2020 10 09.
Article in English | MEDLINE | ID: mdl-33037304

ABSTRACT

Live biotherapeutic products (LBP) are emerging as alternative treatment strategies for chronic rhinosinusitis. The selection of interesting candidate LBPs often involves model systems that do not include the polymicrobial background (i.e. the host microbiota) in which they will be introduced. Here, we performed a screening in a simplified model system of upper respiratory epithelium to assess the effect of nasal microbiota composition on the ability to attach and grow of a potential LBP, Lacticaseibacillus casei AMBR2, in this polymicrobial background. After selecting the most permissive and least permissive donor, L. casei AMBR2 colonisation in their respective polymicrobial backgrounds was assessed in more physiologically relevant model systems. We examined cytotoxicity, epithelial barrier function, and cytokine secretion, as well as bacterial cell density and phenotypic diversity in differentiated airway epithelium based models, with or without macrophage-like cells. L. casei AMBR2 could colonize in the presence of both selected donor microbiota and increased epithelial barrier resistance in presence of donor-derived nasal bacteria, as well as anti-inflammatory cytokine secretion in the presence of macrophage-like cells. This study highlights the potential of L. casei AMBR2 as LBP and the necessity to employ physiologically relevant model systems to investigate host-microbe interaction in LBP research.


Subject(s)
Lacticaseibacillus casei/immunology , Microbiota/immunology , Nose/microbiology , Respiratory Mucosa/immunology , Respiratory Mucosa/microbiology , Cells, Cultured , Cytokines/immunology , Epithelial Cells/immunology , Epithelial Cells/microbiology , Epithelium , Host Microbial Interactions/immunology , Humans , Immunity/immunology , Inflammation/immunology , Inflammation/microbiology , Macrophages/immunology , Nose/immunology
6.
NPJ Biofilms Microbiomes ; 6(1): 9, 2020 02 19.
Article in English | MEDLINE | ID: mdl-32075981

ABSTRACT

Celecoxib has been effective in the prevention and treatment of chronic inflammatory disorders through inhibition of altered cyclooxygenase-2 (COX-2) pathways. Despite the benefits, continuous administration may increase risk of cardiovascular events. Understanding microbiome-drug-host interactions is fundamental for improving drug disposition and safety responses of colon-targeted formulations, but little information is available on the bidirectional interaction between individual microbiomes and celecoxib. Here, we conducted in vitro batch incubations of human faecal microbiota to obtain a mechanistic proof-of-concept of the short-term impact of celecoxib on activity and composition of colon bacterial communities. Celecoxib-exposed microbiota shifted metabolic activity and community composition, whereas total transcriptionally active bacterial population was not significantly changed. Butyrate production decreased by 50% in a donor-dependent manner, suggesting that celecoxib impacts in vitro fermentation. Microbiota-derived acetate has been associated with inhibition of cancer markers and our results suggest uptake of acetate for bacterial functions when celecoxib was supplied, which potentially favoured bacterial competition for acetyl-CoA. We further assessed whether colon microbiota modulates anti-inflammatory efficacy of celecoxib using a simplified inflammation model, and a novel in vitro simulation of the enterohepatic metabolism. Celecoxib was responsible for only 5% of the variance in bacterial community composition but celecoxib-exposed microbiota preserved barrier function and decreased concentrations of IL-8 and CXCL16 in a donor-dependent manner in our two models simulating gut inflammatory milieu. Our results suggest that celecoxib-microbiome-host interactions may not only elicit adaptations in community composition but also in microbiota functionality, and these may need to be considered for guaranteeing efficient COX-2 inhibition.


Subject(s)
Bacteria/classification , Butyrates/metabolism , Celecoxib/pharmacology , Chemokine CXCL16/metabolism , Gastrointestinal Microbiome/drug effects , Interleukin-6/metabolism , Sequence Analysis, DNA/methods , Adult , Bacteria/drug effects , Bacteria/genetics , Bacteria/metabolism , Batch Cell Culture Techniques , Caco-2 Cells , Cell Line, Tumor , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , Feces/microbiology , Female , Fermentation , HT29 Cells , High-Throughput Nucleotide Sequencing , Humans , Male , Proof of Concept Study , RNA, Ribosomal, 16S/genetics , THP-1 Cells
7.
Am J Physiol Endocrinol Metab ; 318(5): E742-E749, 2020 05 01.
Article in English | MEDLINE | ID: mdl-31935110

ABSTRACT

Gut-liver cross talk is an important determinant of human health with profound effects on energy homeostasis. While gut microbes produce a huge range of metabolites, specific compounds such as short-chain fatty acids (SCFAs) can enter the portal circulation and reach the liver (Brandl K, Schnabl B. Curr Opin Gastroenterol 33: 128-133, 2017), a central organ involved in glucose homeostasis and diabetes control. Propionate is a major SCFA involved in activation of intestinal gluconeogenesis (IGN), thereby regulating food intake, enhancing insulin sensitivity, and leading to metabolic homeostasis. Although microbiome-modulating strategies may target the increased microbial production of propionate, it is not clear whether such an effect spreads through to the hepatic cellular level. Here, we designed a propionate-producing consortium using a selection of commensal gut bacteria, and we investigated how their delivered metabolites impact an in vitro enterohepatic model of insulin resistance. Glycogen storage on hepatocyte-like cells and inflammatory markers associated with insulin resistance were evaluated to understand the role of gut metabolites on gut-liver cross talk in a simulated scenario of insulin resistance. The metabolites produced by our consortium increased glycogen synthesis by ~57% and decreased proinflammatory markers such as IL-8 by 12%, thus elucidating the positive effect of our consortium on metabolic function and low-grade inflammation. Our results suggest that microbiota-derived products can be a promising multipurpose strategy to modulate energy homeostasis, with the potential ability to assist in managing metabolic diseases due to their adaptability.


Subject(s)
Gastrointestinal Microbiome/physiology , Gastrointestinal Tract/metabolism , Hepatocytes/metabolism , Insulin Resistance/physiology , Liver/metabolism , Propionates/metabolism , Biomarkers , Cytokines/metabolism , Gastrointestinal Tract/microbiology , Glycogen/metabolism , Hep G2 Cells , Humans , Inflammation/metabolism , Inflammation/microbiology , Liver/microbiology
8.
mSphere ; 5(1)2020 01 15.
Article in English | MEDLINE | ID: mdl-31941815

ABSTRACT

The epithelium of the human sinonasal cavities is colonized by a diverse microbial community, modulating epithelial development and immune priming and playing a role in respiratory disease. Here, we present a novel in vitro approach enabling a 3-day coculture of differentiated Calu-3 respiratory epithelial cells with a donor-derived bacterial community, a commensal species (Lactobacillus sakei), or a pathobiont (Staphylococcus aureus). We also assessed how the incorporation of macrophage-like cells could have a steering effect on both epithelial cells and the microbial community. Inoculation of donor-derived microbiota in our experimental setup did not pose cytotoxic stress on the epithelial cell layers, as demonstrated by unaltered cytokine and lactate dehydrogenase release compared to a sterile control. Epithelial integrity of the differentiated Calu-3 cells was maintained as well, with no differences in transepithelial electrical resistance observed between coculture with donor-derived microbiota and a sterile control. Transition of nasal microbiota from in vivo to in vitro conditions maintained phylogenetic richness, and yet a decrease in phylogenetic and phenotypic diversity was noted. Additional inclusion and coculture of THP-1-derived macrophages did not alter phylogenetic diversity, and yet donor-independent shifts toward higher Moraxella and Mycoplasma abundance were observed, while phenotypic diversity was also increased. Our results demonstrate that coculture of differentiated airway epithelial cells with a healthy donor-derived nasal community is a viable strategy to mimic host-microbe interactions in the human upper respiratory tract. Importantly, including an immune component allowed us to study host-microbe interactions in the upper respiratory tract more in depth.IMPORTANCE Despite the relevance of the resident microbiota in sinonasal health and disease and the need for cross talk between immune and epithelial cells in the upper respiratory tract, these parameters have not been combined in a single in vitro model system. We have developed a coculture system of differentiated respiratory epithelium and natural nasal microbiota and incorporated an immune component. As indicated by absence of cytotoxicity and stable cytokine profiles and epithelial integrity, nasal microbiota from human origin appeared to be well tolerated by host cells, while microbial community composition remained representative for that of the human (sino)nasal cavity. Importantly, the introduction of macrophage-like cells enabled us to obtain a differential readout from the epithelial cells dependent on the donor microbial background to which the cells were exposed. We conclude that both model systems offer the means to investigate host-microbe interactions in the upper respiratory tract in a more representative way.


Subject(s)
Host Microbial Interactions , Macrophages/microbiology , Microbiota , Nasal Cavity/microbiology , Respiratory Mucosa/microbiology , Coculture Techniques , Cytokines/immunology , Humans , Latilactobacillus sakei/immunology , Latilactobacillus sakei/physiology , Nasal Cavity/cytology , Phylogeny , RNA, Ribosomal, 16S/genetics , Respiratory Mucosa/immunology , Staphylococcus aureus/immunology , Staphylococcus aureus/physiology , THP-1 Cells
9.
Front Microbiol ; 10: 1206, 2019.
Article in English | MEDLINE | ID: mdl-31214145

ABSTRACT

Metabolic syndrome is a growing public health concern. Efforts at searching for links with the gut microbiome have revealed that propionate is a major fermentation product in the gut with several health benefits toward energy homeostasis. For instance, propionate stimulates satiety-inducing hormones, leading to lower energy intake and reducing weight gain and associated risk factors. In (disease) scenarios where microbial dysbiosis is apparent, gut microbial production of propionate may be decreased. Here, we investigated the effect of a propionogenic bacterial consortium composed of Lactobacillus plantarum, Bacteroides thetaiotaomicron, Ruminococcus obeum, Coprococcus catus, Bacteroides vulgatus, Akkermansia muciniphila, and Veillonella parvula for its potential to restore in vitro propionate concentrations upon antibiotic-induced microbial dysbiosis. Using the mucosal simulator of the human intestinal microbial ecosystem (M-SHIME), we challenged the simulated colon microbiome with clindamycin. Addition of the propionogenic consortium resulted in successful colonization and subsequent restoration of propionate levels, while a positive effect on the mitochondrial membrane potential (ΔΨm) was observed in comparison with the controls. Our results support the development and application of next generation probiotics, which are composed of multiple bacterial strains with diverse functionality and phylogenetic background.

10.
J Vis Exp ; (137)2018 07 04.
Article in English | MEDLINE | ID: mdl-30035767

ABSTRACT

The interplay between host and microbiota has been long recognized and extensively described. The mouth is similar to other sections of the gastrointestinal tract, as resident microbiota occurs and prevents colonisation by exogenous bacteria. Indeed, more than 600 species of bacteria are found in the oral cavity, and a single individual may carry around 100 different at any time. Oral bacteria possess the ability to adhere to the various niches in the oral ecosystem, thus becoming integrated within the resident microbial communities, and favouring growth and survival. However, the flow of bacteria into the gut during swallowing has been proposed to disturb the balance of the gut microbiota. In fact, oral administration of P. gingivalis shifted bacterial composition in the ileal microflora. We used a synthetic community as a simplified representation of the natural oral ecosystem, to elucidate the survival and viability of oral bacteria subjected to simulated gastrointestinal transit conditions. Fourteen species were selected, subjected to in vitro salivary, gastric, and intestinal digestion processes, and presented to a multicompartment cell model containing Caco-2 and HT29-MTX cells to simulate the gut mucosal epithelium. This model served to unravel the impact of swallowed bacteria on cells involved in the enterohepatic circulation. Using synthetic communities allows for controllability and reproducibility. Thus, this methodology can be adapted to assess pathogen viability and subsequent inflammation-associated changes, colonization capacity of probiotic mixtures, and ultimately, potential bacterial impact on the presystemic circulation.


Subject(s)
Gastrointestinal Microbiome/physiology , Intestines/microbiology , Humans
11.
Microbiome ; 6(1): 75, 2018 04 24.
Article in English | MEDLINE | ID: mdl-29690931

ABSTRACT

Chronic rhinosinusitis (CRS) is a chronic inflammation of the mucosa of the nose and paranasal sinuses affecting approximately 11% of the adult population in Europe. Inadequate immune responses, as well as a dysbiosis of the sinonasal microbiota, have been put forward as aetiological factors of the disease. However, despite the prevalence of this disease, there is no consensus on the aetiology and mechanisms of pathogenesis of CRS. Further research requires in vitro models mimicking the healthy and diseased host environment along with the sinonasal microbiota. This review aims to provide an overview of CRS model systems and proposes in vitro modelling strategies to conduct mechanistic research in an ecological framework on the sinonasal microbiota and its interactions with the host in health and CRS.


Subject(s)
Host-Pathogen Interactions , Microbiota , Models, Biological , Respiratory Tract Diseases/etiology , Respiratory Tract Diseases/pathology , Cellular Microenvironment , Chronic Disease , Humans , Respiratory Mucosa/immunology , Respiratory Mucosa/metabolism , Rhinitis/etiology , Rhinitis/pathology , Sinusitis/etiology , Sinusitis/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...