Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Org Chem ; 89(1): 633-643, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38079578

ABSTRACT

Herein, we report the visible-light-mediated addition of organoborates to α-halogenated electron-poor olefins enabled by an environmentally benign metal-free catalyst. The method accommodates a variety of boronic acid derivatives as well as alkenes and delivers the corresponding saturated α-halo-derivatives in up to 90% yields. The obtained products are high-value building blocks in organic synthesis, allowing for a variety of follow-up transformations.

2.
Bioorg Med Chem Lett ; 22(1): 96-101, 2012 Jan 01.
Article in English | MEDLINE | ID: mdl-22154349

ABSTRACT

The discovery and characterization of two new chemical classes of potent and selective Polo-like kinase 1 (PLK1) inhibitors is reported. For the most interesting compounds, we discuss the biological activities, crystal structures and preliminary pharmacokinetic parameters. The more advanced compounds inhibit PLK1 in the enzymatic assay at the nM level and exhibit good activity in cell proliferation on A2780 cells. Furthermore, these compounds showed high levels of selectivity on a panel of unrelated kinases, as well as against PLK2 and PLK3 isoforms. Additionally, the compounds show acceptable oral bioavailability in mice making these inhibitors suitable candidates for further in vivo activity studies.


Subject(s)
Cell Cycle Proteins/antagonists & inhibitors , Protein Serine-Threonine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Pyridones/chemistry , Pyrimidines/pharmacology , Pyrroles/chemistry , Administration, Oral , Algorithms , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Chemistry, Pharmaceutical/methods , Dose-Response Relationship, Drug , Drug Design , Drug Screening Assays, Antitumor/methods , Enzymes/chemistry , Humans , Mice , Models, Chemical , Protein Isoforms , Pyridones/pharmacology , Pyrimidines/chemical synthesis , Pyrroles/chemical synthesis , Pyrroles/pharmacology , Tumor Suppressor Proteins , Polo-Like Kinase 1
4.
Cancer Res ; 70(24): 10255-64, 2010 Dec 15.
Article in English | MEDLINE | ID: mdl-21159646

ABSTRACT

MPS1 kinase is a key regulator of the spindle assembly checkpoint (SAC), a mitotic mechanism specifically required for proper chromosomal alignment and segregation. It has been found aberrantly overexpressed in a wide range of human tumors and is necessary for tumoral cell proliferation. Here we report the identification and characterization of NMS-P715, a selective and orally bioavailable MPS1 small-molecule inhibitor, which selectively reduces cancer cell proliferation, leaving normal cells almost unaffected. NMS-P715 accelerates mitosis and affects kinetochore components localization causing massive aneuploidy and cell death in a variety of tumoral cell lines and inhibits tumor growth in preclinical cancer models. Inhibiting the SAC could represent a promising new approach to selectively target cancer cells.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Cycle Proteins/antagonists & inhibitors , Mitosis/drug effects , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Pyrazoles/pharmacology , Quinazolines/pharmacology , Spindle Apparatus/drug effects , Aneuploidy , Animals , Antineoplastic Agents/chemistry , Cell Cycle Proteins/chemistry , Cell Growth Processes/drug effects , HCT116 Cells , HeLa Cells , Humans , Mice , Mice, Nude , Models, Molecular , Molecular Targeted Therapy/methods , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/chemistry , Protein-Tyrosine Kinases , Xenograft Model Antitumor Assays
5.
J Med Chem ; 53(20): 7296-315, 2010 Oct 28.
Article in English | MEDLINE | ID: mdl-20873740

ABSTRACT

Cdc7 serine/threonine kinase is a key regulator of DNA synthesis in eukaryotic organisms. Cdc7 inhibition through siRNA or prototype small molecules causes p53 independent apoptosis in tumor cells while reversibly arresting cell cycle progression in primary fibroblasts. This implies that Cdc7 kinase could be considered a potential target for anticancer therapy. We previously reported that pyrrolopyridinones (e.g., 1) are potent and selective inhibitors of Cdc7 kinase, with good cellular potency and in vitro ADME properties but with suboptimal pharmacokinetic profiles. Here we report on a new chemical class of 5-heteroaryl-3-carboxamido-2-substituted pyrroles (1A) that offers advantages of chemistry diversification and synthetic simplification. This work led to the identification of compound 18, with biochemical data and ADME profile similar to those of compound 1 but characterized by superior efficacy in an in vivo model. Derivative 18 represents a new lead compound worthy of further investigation toward the ultimate goal of identifying a clinical candidate.


Subject(s)
Antineoplastic Agents/chemical synthesis , Cell Cycle Proteins/antagonists & inhibitors , Protein Serine-Threonine Kinases/antagonists & inhibitors , Pyrimidines/chemical synthesis , Pyrroles/chemical synthesis , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Biological Availability , Cell Line, Tumor , Drug Screening Assays, Antitumor , Humans , Mice , Mice, Nude , Neoplasm Transplantation , Pyrimidines/chemistry , Pyrimidines/pharmacology , Pyrroles/chemistry , Pyrroles/pharmacology , Structure-Activity Relationship , Transplantation, Heterologous
6.
J Med Chem ; 47(10): 2611-23, 2004 May 06.
Article in English | MEDLINE | ID: mdl-15115402

ABSTRACT

The mechanism of action of many antitumor agents involves DNA damage, either by direct binding of the drug to DNA or to DNA-binding proteins. However, most of the DNA-interacting agents have only a limited degree of sequence specificity, which implies that they may hit all the cellular genes. DNA minor groove binders, among which the derivatives of distamycin A play an important role, could provide significant improvement in cancer management, increasing gene specificity, due to high selectivity of interaction with thymine-adenine (TA) rich sequences. We now report and discuss the synthesis, the in vitro and in vivo activities, and some mechanistic features of alpha-halogenoacrylamido derivatives of distamycin A. The final result of this work was the selection of brostallicin 17 (PNU-166196). Brostallicin, presently in phase II clinical trials, shows a broad spectrum of antitumor activity and an apoptotic effect higher than distamycin derivative tallimustine. An important in vitro toxicological feature of brostallicin is the very good ratio between myelotoxicity on human haematopoietic progenitor cells and cytotoxicity on tumor cells, in comparison with clinically tested DNA minor groove binders. A peculiarity of brostallicin is its in vitro reactivity in the DNA alkylation assays only in the presence of glutathione. Moreover brostallicin's antitumor activity, both in in vitro and in vivo tumor models, is higher in the presence of increased levels of glutathione/glutathione-S-tranferases. These findings contribute to the definition of brostallicin as a novel anticancer agent that differs from other minor groove binders and alkylating agents for both the profile of activity and the mechanism of action and to classify the alpha-bromoacrylamido derivatives of distamycin as a new class of cytotoxics. Moreover, due to its interaction with glutathione, brostallicin may have a role for the tailored treatment of tumors characterized by constitutive or therapy-induced overexpression of glutathione/glutathione-S-tranferase levels.


Subject(s)
Antineoplastic Agents/chemical synthesis , Distamycins/chemical synthesis , Guanidines/chemical synthesis , Pyrroles/chemical synthesis , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Distamycins/chemistry , Distamycins/pharmacology , Drug Screening Assays, Antitumor , Female , Glutathione/metabolism , Guanidines/chemistry , Guanidines/pharmacology , Humans , Inhibitory Concentration 50 , Mice , Mice, Nude , Neoplasm Transplantation , Pyrroles/chemistry , Pyrroles/pharmacology , Structure-Activity Relationship , Transplantation, Heterologous
7.
Bioorg Med Chem Lett ; 12(11): 1467-71, 2002 Jun 03.
Article in English | MEDLINE | ID: mdl-12031321

ABSTRACT

In vitro and in vivo activities of a small series of alpha-bromoacrylic derivatives of low molecular weight (MW) are described and compared with those of alpha-bromoacrylic derivatives of distamycin-like frames. Low MW compounds, when lacking of a strong basic moiety, are potent cytotoxics, while analogues bearing a strong basic moiety are not. This suggests the existence of an active transport mechanism for distamycin-derived cytotoxics characterized by strong basic amidino or guanidino moieties. Low MW compounds are inactive in vivo, possibly because of the metabolic lability of alpha-bromoacrylic moiety. The same moiety is however present in a series of potent anticancer distamycin-like minor groove binders, for example, PNU-166196 (brostallicin), a fact that underlines the features of the latter.


Subject(s)
Acrylates/chemical synthesis , Acrylates/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Hydrocarbons, Brominated/chemical synthesis , Hydrocarbons, Brominated/pharmacology , Acrylates/chemistry , Acrylates/pharmacokinetics , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Biological Transport, Active/drug effects , Caco-2 Cells/drug effects , Caco-2 Cells/metabolism , Cell Survival/drug effects , DNA/metabolism , Distamycins/chemistry , Distamycins/pharmacology , Dose-Response Relationship, Drug , Humans , Hydrocarbons, Brominated/chemistry , Hydrocarbons, Brominated/pharmacokinetics , In Vitro Techniques , Leukemia L1210/drug therapy , Mice , Molecular Weight , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...