Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
PLoS Negl Trop Dis ; 17(9): e0011646, 2023 09.
Article in English | MEDLINE | ID: mdl-37729272

ABSTRACT

Sphingolipids (SLs) are essential components of all eukaryotic cellular membranes. In fungi, plants and many protozoa, the primary SL is inositol-phosphorylceramide (IPC). Trypanosoma cruzi is a protozoan parasite that causes Chagas disease (CD), a chronic illness for which no vaccines or effective treatments are available. IPC synthase (IPCS) has been considered an ideal target enzyme for drug development because phosphoinositol-containing SL is absent in mammalian cells and the enzyme activity has been described in all parasite forms of T. cruzi. Furthermore, IPCS is an integral membrane protein conserved amongst other kinetoplastids, including Leishmania major, for which specific inhibitors have been identified. Using a CRISPR-Cas9 protocol, we generated T. cruzi knockout (KO) mutants in which both alleles of the IPCS gene were disrupted. We demonstrated that the lack of IPCS activity does not affect epimastigote proliferation or its susceptibility to compounds that have been identified as inhibitors of the L. major IPCS. However, disruption of the T. cruzi IPCS gene negatively affected epimastigote differentiation into metacyclic trypomastigotes as well as proliferation of intracellular amastigotes and differentiation of amastigotes into tissue culture-derived trypomastigotes. In accordance with previous studies suggesting that IPC is a membrane component essential for parasite survival in the mammalian host, we showed that T. cruzi IPCS null mutants are unable to establish an infection in vivo, even in immune deficient mice.


Subject(s)
Chagas Disease , Leishmania major , Trypanosoma cruzi , Mice , Animals , Leishmania major/genetics , Cell Differentiation , Inositol/metabolism , Inositol/pharmacology , Mammals
2.
Mem Inst Oswaldo Cruz ; 118: e230090, 2023.
Article in English | MEDLINE | ID: mdl-37646742

ABSTRACT

BACKGROUND: According to the last 2023 Monkeypox (Mpox) Outbreak Global Map from the Centres for Disease Control and Prevention (CDC), more than 100 countries with no Mpox infection report cases. Brazil stands out in this group and is the second country with the highest number of cases in the last outbreak. OBJECTIVE: To contribute to knowledge of the virus infection effects in a cellular model, which is important for diagnosis infections not yet included in a provider´s differential diagnosis and for developing viral inhibition strategies. METHODS: We describe a virus isolation protocol for a human clinical sample from a patient from Brazil, the viral growth in a cell model through plaque forming units (PFU) assay, reverse transcriptase polymerase chain reaction (RT-PCR) and transmission electron microscopy (TEM). FINDINGS: We follow the viral isolation in Vero cell culture from a Mpox positive clinically diagnosed sample and show the infection effects on cellular structures using a TEM. MAIN CONCLUSIONS: Understanding the impact of viral growth on cellular structures and its replication kinetics may offer better strategies for the development of new drugs with antiviral properties.


Subject(s)
Mpox (monkeypox) , Humans , Brazil , Biological Assay , Diagnosis, Differential , Disease Outbreaks
3.
Adv Exp Med Biol ; 1429: 111-125, 2023.
Article in English | MEDLINE | ID: mdl-37486519

ABSTRACT

Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, is an illness that affects 6-8 million people worldwide and is responsible for approximately 50,000 deaths per year. Despite intense research efforts on Chagas disease and its causative agent, there is still a lack of effective treatments or strategies for disease control. Although significant progress has been made toward the elucidation of molecular mechanisms involved in host-parasite interactions, particularly immune evasion mechanisms, a deeper understanding of these processes has been hindered by a lack of efficient genetic manipulation protocols. One major challenge is the fact that several parasite virulence factors are encoded by multigene families, which constitute a distinctive feature of the T. cruzi genome. The recent advent of the CRISPR/Cas9 technology represented an enormous breakthrough in the studies involving T. cruzi genetic manipulation compared to previous protocols that are poorly efficient and required a long generation time to develop parasite mutants. Since the first publication of CRISPR gene editing in T. cruzi, in 2014, different groups have used distinct protocols to generated knockout mutants, parasites overexpressing a protein or expressing proteins with sequence tags inserted in the endogenous gene. Importantly, CRISPR gene editing allowed generation of parasite mutants with gene disruption in multi-copy gene families. We described four main strategies used to edit the T. cruzi genome and summarized a large list of studies performed by different groups in the past 7 years that are addressing several mechanisms involved with parasite proliferation, differentiation, and survival strategies within its different hosts.


Subject(s)
Chagas Disease , Trypanosoma cruzi , Humans , Gene Editing/methods , CRISPR-Cas Systems/genetics , Chagas Disease/genetics , Chagas Disease/parasitology , Trypanosoma cruzi/genetics
4.
J Biol Chem ; 299(7): 104857, 2023 07.
Article in English | MEDLINE | ID: mdl-37230387

ABSTRACT

The TcK2 protein kinase of Trypanosoma cruzi, the causative agent of Chagas disease, is structurally similar to the human kinase PERK, which phosphorylates the initiation factor eIF2α and, in turn, inhibits translation initiation. We have previously shown that absence of TcK2 kinase impairs parasite proliferation within mammalian cells, positioning it as a potential target for treatment of Chagas disease. To better understand its role in the parasite, here we initially confirmed the importance of TcK2 in parasite proliferation by generating CRISPR/Cas9 TcK2-null cells, albeit they more efficiently differentiate into infective forms. Proteomics indicates that the TcK2 knockout of proliferative forms expresses proteins including trans-sialidases, normally restricted to infective and nonproliferative trypomastigotes explaining decreased proliferation and better differentiation. TcK2 knockout cells lost phosphorylation of eukaryotic initiation factor 3 and cyclic AMP responsive-like element, recognized to promote growth, likely explaining both decreased proliferation and augmented differentiation. To identify specific inhibitors, a library of 379 kinase inhibitors was screened by differential scanning fluorimetry using a recombinant TcK2 encompassing the kinase domain and selected molecules were tested for kinase inhibition. Only Dasatinib and PF-477736, inhibitors of Src/Abl and ChK1 kinases, showed inhibitory activity with IC50 of 0.2 ± 0.02 mM and 0.8 ± 0.1, respectively. In infected cells Dasatinib inhibited growth of parental amastigotes (IC50 = 0.6 ± 0.2 mM) but not TcK2 of depleted parasites (IC50 > 34 mM) identifying Dasatinib as a potential lead for development of therapeutics for Chagas disease targeting TcK2.


Subject(s)
Chagas Disease , Parasites , Trypanosoma cruzi , Animals , Humans , Trypanosoma cruzi/genetics , eIF-2 Kinase/genetics , eIF-2 Kinase/metabolism , Dasatinib , Chagas Disease/drug therapy , Chagas Disease/parasitology , Cell Proliferation , Mammals/metabolism
5.
Mem Inst Oswaldo Cruz ; 118: e220255, 2023.
Article in English | MEDLINE | ID: mdl-37162062

ABSTRACT

BACKGROUND: Dengue is a disease caused by dengue virus (DENV-1 through -4). Among the four serotypes, DENV-4 remains the least studied. Acute kidney injury is a potential complication of dengue generally associated with severe dengue infection. OBJECTIVES: The goal of this study was to investigate the alterations caused by experimental dengue infection in the kidney of adult BALB/c mice. METHODS: In this study, BALB/c mice were infected through the intravenous route with a DENV-4 strain, isolated from a human patient. The kidneys of the mice were procured and subject to histopathological and ultrastructural analysis. FINDINGS: The presence of the viral antigen was confirmed through immunohistochemistry. Analysis of tissue sections revealed the presence of inflammatory cell infiltrate throughout the parenchyma. Glomerular enlargement was a common find. Necrosis of tubular cells and haemorrhage were also observed. Analysis of the kidney on a transmission electron microscope allowed a closer look into the necrotic tubular cells, which presented nuclei with condensed chromatin, and loss of cytoplasm. MAIN CONCLUSIONS: Even though the kidney is probably not a primary target of dengue infection in mice, the inoculation of the virus in the blood appears to damage the renal tissue through local inflammation.


Subject(s)
Dengue Virus , Severe Dengue , Adult , Humans , Animals , Mice , Kidney , Antigens, Viral , Mice, Inbred BALB C
6.
Mem. Inst. Oswaldo Cruz ; 118: e220255, 2023. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1440671

ABSTRACT

BACKGROUND Dengue is a disease caused by dengue virus (DENV-1 through -4). Among the four serotypes, DENV-4 remains the least studied. Acute kidney injury is a potential complication of dengue generally associated with severe dengue infection. OBJECTIVES The goal of this study was to investigate the alterations caused by experimental dengue infection in the kidney of adult BALB/c mice. METHODS In this study, BALB/c mice were infected through the intravenous route with a DENV-4 strain, isolated from a human patient. The kidneys of the mice were procured and subject to histopathological and ultrastructural analysis. FINDINGS The presence of the viral antigen was confirmed through immunohistochemistry. Analysis of tissue sections revealed the presence of inflammatory cell infiltrate throughout the parenchyma. Glomerular enlargement was a common find. Necrosis of tubular cells and haemorrhage were also observed. Analysis of the kidney on a transmission electron microscope allowed a closer look into the necrotic tubular cells, which presented nuclei with condensed chromatin, and loss of cytoplasm. MAIN CONCLUSIONS Even though the kidney is probably not a primary target of dengue infection in mice, the inoculation of the virus in the blood appears to damage the renal tissue through local inflammation.

7.
Mem. Inst. Oswaldo Cruz ; 118: e230090, 2023. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1506730

ABSTRACT

BACKGROUND According to the last 2023 Monkeypox (Mpox) Outbreak Global Map from the Centres for Disease Control and Prevention (CDC), more than 100 countries with no Mpox infection report cases. Brazil stands out in this group and is the second country with the highest number of cases in the last outbreak. OBJECTIVE To contribute to knowledge of the virus infection effects in a cellular model, which is important for diagnosis infections not yet included in a provider´s differential diagnosis and for developing viral inhibition strategies. METHODS We describe a virus isolation protocol for a human clinical sample from a patient from Brazil, the viral growth in a cell model through plaque forming units (PFU) assay, reverse transcriptase polymerase chain reaction (RT-PCR) and transmission electron microscopy (TEM). FINDINGS We follow the viral isolation in Vero cell culture from a Mpox positive clinically diagnosed sample and show the infection effects on cellular structures using a TEM. MAIN CONCLUSIONS Understanding the impact of viral growth on cellular structures and its replication kinetics may offer better strategies for the development of new drugs with antiviral properties.

8.
PLoS Negl Trop Dis ; 16(10): e0010845, 2022 10.
Article in English | MEDLINE | ID: mdl-36260546

ABSTRACT

Chagas disease, caused by the protozoan Trypanosoma cruzi, is a serious chronic parasitic disease, currently treated with Nifurtimox (NFX) and Benznidazole (BZ). In addition to high toxicity, these drugs have low healing efficacy, especially in the chronic phase of the disease. The existence of drug-resistant T. cruzi strains and the occurrence of cross-resistance between BZ and NFX have also been described. In this context, it is urgent to study the metabolism of these drugs in T. cruzi, to better understand the mechanisms of resistance. Prostaglandin F2α synthase (PGFS) is an enzyme that has been correlated with parasite resistance to BZ, but the mechanism by which resistance occurs is still unclear. Our results show that the genome of the CL Brener clone of T. cruzi, contains five PGFS sequences and three potential pseudogenes. Using CRISPR/Cas9 we generated knockout cell lines in which all PGFS sequences were disrupted, as shown by PCR and western blotting analyses. The PGFS deletion did not alter the growth of the parasites or their susceptibility to BZ and NFX when compared to wild-type (WT) parasites. Interestingly, NTR-1 transcripts were shown to be upregulated in ΔPGFS mutants. Furthermore, the ΔPGFS parasites were 1.6 to 1.7-fold less tolerant to oxidative stress generated by menadione, presented lower levels of lipid bodies than the control parasites during the stationary phase, and were less infective than control parasites.


Subject(s)
Chagas Disease , Trypanocidal Agents , Trypanosoma cruzi , Humans , Nifurtimox/therapeutic use , Dinoprost/therapeutic use , Trypanocidal Agents/therapeutic use , Vitamin K 3/therapeutic use , Chagas Disease/parasitology , Oxidative Stress
9.
mBio ; 13(1): e0347821, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35073735

ABSTRACT

Trans-sialidases (TS) are unusual enzymes present on the surface of Trypanosoma cruzi, the causative agent of Chagas disease. Encoded by the largest gene family in the T. cruzi genome, only few members of the TS family have catalytic activity. Active trans-sialidases (aTS) are responsible for transferring sialic acid from host glycoconjugates to mucins, also present on the parasite surface. The existence of several copies of TS genes has impaired the use of reverse genetics to study this highly polymorphic gene family. Using CRISPR-Cas9, we generated aTS knockout cell lines displaying undetectable levels of TS activity, as shown by sialylation assays and labeling with antibodies that recognize sialic acid-containing mucins. In vitro infection assays showed that disruption of aTS genes does not affect the parasite's capacity to invade cells or to escape from the parasitophorous vacuole but resulted in impaired differentiation of amastigotes into trypomastigotes and parasite egress from the cell. When inoculated into mice, aTS mutants were unable to establish infection even in the highly susceptible gamma interferon (IFN-γ) knockout mice. Mice immunized with aTS mutants were fully protected against a challenge infection with the virulent T. cruzi Y strain. Altogether, our results confirmed the role of aTS as a T. cruzi virulence factor and indicated that aTS play a major role during the late stages of intracellular development and parasite egress. Notably, mutants lacking TS activity are completely avirulent in animal models of infection and may be used as a live attenuated vaccine against Chagas disease. IMPORTANCE Trypanosoma cruzi is the causative agent of Chagas disease, a neglected tropical disease that affects approximately 6 to 8 million people and for which there is no effective treatment or vaccine. The parasite expresses a family of surface proteins, named trans-sialidases, responsible for transferring sialic acid from host glycoconjugates to parasite mucins. Although recognized as a main virulence factor, the multiple roles of these proteins during infection have not yet been fully characterized, mainly because the presence of several copies of aTS genes has impaired their study using reverse genetics. By applying CRISPR-Cas9, we generated aTS knockout parasites and showed that, although aTS parasite mutants were able to infect cells in vitro, they have an impaired capacity to egress from the infected cell. Importantly, aTS mutants lost the ability to cause infection in vivo but provided full protection against a challenge infection with a virulent strain.


Subject(s)
Chagas Disease , Parasites , Trypanosoma cruzi , Animals , Mice , Trypanosoma cruzi/genetics , Parasites/metabolism , N-Acetylneuraminic Acid/metabolism , Glycoproteins/metabolism , Chagas Disease/parasitology , Neuraminidase , Mucins/metabolism , Virulence Factors , Mammals/metabolism
10.
Methods Mol Biol ; 2409: 11-30, 2022.
Article in English | MEDLINE | ID: mdl-34709632

ABSTRACT

Despite the advancement of molecular biology techniques, morphological studies using transmission electron microscopy (TEM) are still being of great importance to elucidate some aspects of viral structures, morphogenesis, and pathogenesis. In relation to dengue viruses (DENV), several studies report the use of TEM to obtain a clearer definition of viral morphology, the events involved in its morphogenesis, aspects of pathogenesis, and cell tropism. In this chapter, the main technical protocols and their respective reagents for studies of DENV infection by TEM are described, both in cell culture and in biological tissue samples.


Subject(s)
Dengue Virus , Microscopy, Electron, Transmission
11.
Microorganisms ; 9(12)2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34946137

ABSTRACT

Dengue virus (DENV) infection by one of the four serotypes (DENV-1 to 4) may result in a wide spectrum of clinical manifestations, with unpredictable evolution and organ involvement. Due to its association with severe epidemics and clinical manifestations, DENV-2 has been substantially investigated. In fact, the first emergence of a new lineage of the DENV-2 Asian/American genotype in Brazil (Lineage II) in 2008 was associated with severe cases and increased mortality related to organ involvement. A major challenge for dengue pathogenesis studies has been a suitable animal model, but the use of immune-competent mice, although sometimes controversial, has proven to be useful, as histological observations in infected animals reveal tissue alterations consistent to those observed in dengue human cases. Here, we aimed to investigate the outcomes caused by two distinct lineages of the DENV-2 Asian/American genotype in the lung, heart and skeletal muscle tissues of infected BALB/c mice. Tissues were submitted to histopathology, immunohistochemistry, histomorphometry and transmission electron microscopy (TEM) analysis. The viral genome was detected in heart and skeletal muscle samples. The viral antigen was detected in cardiomyocytes and endothelial cells of heart tissue. Heart and lung tissue samples presented morphological alterations comparable to those seen in dengue human cases. Creatine kinase serum levels were higher in mice infected with both lineages of DENV-2. Additionally, statistically significant differences, concerning alveolar septa thickening and heart weight, were observed between BALB/c mice infected with both DENV-2 lineages, which was demonstrated to be an appropriate experimental model for dengue pathogenesis studies on lung, heart and skeletal muscle tissues.

12.
BMJ Case Rep ; 14(11)2021 Nov 09.
Article in English | MEDLINE | ID: mdl-34753721

ABSTRACT

We report the case of a 10-year-old boy that presented with a palpable, painless, frontal lesion. Laboratory assessments were unremarkable and the patient was asymptomatic. Initial investigation, with a skull radiograph and unenhanced CT scan, showed a lytic midline frontal lesion involving the inner and outer tables of the skull and a large subgaleal hypodense component. MRI further depicted communication with the epidural space and contact with the superior sagittal sinus (SSS). Subsequent evaluation by Doppler ultrasound and MR angiography excluded a sinus pericranii and showed normal patency of the SSS. Surgical biopsy revealed chronic granulomatous inflammation; PCR was positive for Mycobacterium sp. One year after surgical resection and antitubercular therapy, there are no signs of recurrence. Primary calvarial involvement by tuberculosis is rare, even in developing countries. Familiarity with the expected clinical and imaging features is required to avoid diagnostic delay.


Subject(s)
Sinus Pericranii , Tuberculosis, Osteoarticular , Child , Delayed Diagnosis , Humans , Male , Skull/diagnostic imaging , Superior Sagittal Sinus , Tuberculosis, Osteoarticular/diagnostic imaging , Tuberculosis, Osteoarticular/drug therapy
13.
PLoS Negl Trop Dis ; 15(11): e0009951, 2021 11.
Article in English | MEDLINE | ID: mdl-34780470

ABSTRACT

With current drug treatments failing due to toxicity, low efficacy and resistance; leishmaniasis is a major global health challenge that desperately needs new validated drug targets. Inspired by activity of the natural chalcone 2',6'-dihydroxy-4'-methoxychalcone (DMC), the nitro-analogue, 3-nitro-2',4',6'- trimethoxychalcone (NAT22, 1c) was identified as potent broad spectrum antileishmanial drug lead. Structural modification provided an alkyne containing chemical probe that labelled a protein within the parasite that was confirmed as cytosolic tryparedoxin peroxidase (cTXNPx). Crucially, labelling is observed in both promastigote and intramacrophage amastigote life forms, with no evidence of host macrophage toxicity. Incubation of the chalcone in the parasite leads to ROS accumulation and parasite death. Deletion of cTXNPx, by CRISPR-Cas9, dramatically impacts upon the parasite phenotype and reduces the antileishmanial activity of the chalcone analogue. Molecular docking studies with a homology model of in-silico cTXNPx suggest that the chalcone is able to bind in the putative active site hindering access to the crucial cysteine residue. Collectively, this work identifies cTXNPx as an important target for antileishmanial chalcones.


Subject(s)
Antiprotozoal Agents/therapeutic use , Chalcone/metabolism , Chalcone/pharmacology , Cytosol/drug effects , Leishmania/drug effects , Peroxidases/antagonists & inhibitors , Protozoan Proteins/antagonists & inhibitors , Animals , Antiprotozoal Agents/administration & dosage , Antiprotozoal Agents/pharmacology , Cells, Cultured , Chalcone/administration & dosage , Chalcone/analogs & derivatives , Cytosol/enzymology , Cytosol/parasitology , Drug Discovery , Humans , Leishmania/classification , Leishmaniasis/drug therapy , Leishmaniasis/parasitology , Macrophages/drug effects , Macrophages/parasitology , Mice , Mice, Inbred BALB C , Molecular Docking Simulation , Peroxidases/metabolism , Protozoan Proteins/metabolism
14.
Viruses ; 13(10)2021 09 29.
Article in English | MEDLINE | ID: mdl-34696384

ABSTRACT

Ever since its brief introduction in the Brazilian territory in 1981, dengue virus serotype 4 (DENV-4) remained absent from the national epidemiological scenario for almost 25 years. The emergence of DENV-4 in 2010 resulted in epidemics in most Brazilian states. DENV-4, however, remains one of the least studied among the four DENV serotypes. Despite being known as a mild serotype, DENV-4 is associated with severe cases and deaths and deserves to be investigated; however, the lack of suitable experimental animal models is a limiting factor for pathogenesis studies. Here, we aimed to investigate the susceptibility and potential tropism of DENV-4 for liver, lung and heart of an immunocompetent mice model, and to evaluate and investigate the resulting morphological and ultrastructural alterations upon viral infection. BALB/c mice were inoculated intravenously with non-neuroadapted doses of DENV-4 isolated from a human case. The histopathological analysis of liver revealed typical alterations of DENV, such as microsteatosis, edema and vascular congestion, while in lung, widespread areas of hemorrhage and interstitial pneumonia were observed. While milder alterations were present in heart, characterized by limited hemorrhage and discrete presence of inflammatory infiltrate, the disorganization of the structure of the intercalated disc is of particular interest. DENV-4 RNA was detected in liver, lung, heart and serum of BALB/c mice through qRT-PCR, while the NS3 viral protein was observed in all of the aforementioned organs through immunohistochemistry. These findings indicate the susceptibility of the model to the serotype and further reinforce the usefulness of BALB/c mice in studying the many alterations caused by DENV.


Subject(s)
Dengue Virus/genetics , Dengue Virus/pathogenicity , Serogroup , Viral Proteins/genetics , Viral Tropism , Animals , Dengue/virology , Dengue Virus/classification , Disease Models, Animal , Heart/virology , Humans , Liver , Lung/virology , Male , Mice , Mice, Inbred BALB C , Viremia
15.
Pathogens ; 10(9)2021 Aug 26.
Article in English | MEDLINE | ID: mdl-34578117

ABSTRACT

Dengue virus type 2 (DENV-2) is, traditionally, the most studied serotype due to its association with explosive outbreaks and severe cases. In Brazil, almost 20 years after the first introduction in the 1990s, a new lineage (Lineage II) of the DENV-2 Asian/American genotype emerged and caused an epidemic with severe cases and hospitalizations. Severe dengue includes multiple organ failure, and renal involvement can be potentially related to increased mortality. In order to better understand the role of DENV infection in renal injury, here we aimed to investigate the outcomes of infection with two distinct lineages of DENV-2 Asian/American genotype in the kidney of a murine model. BALB/c mice were infected with Lineages I and II and tissues were submitted to histopathology, immunohistochemistry, histomorphometry and ultrastructural analysis. Blood urea nitrogen (BUN) was detected in blood sample accessed by cardiac puncture. A tendency in kidney weight increase was observed in mice infected with both lineages, but urea levels, on average, were increased only in mice infected with Lineage II. The DENV antigen was detected in the tissue of mice infected with Lineage II and morphological changes were similar to those observed in human dengue cases. Furthermore, the parameters such as organ weight, urea levels and morphometric analysis, showed significant differences between the two lineages in the infected BALB/c, which was demonstrated to be a suitable experimental model for dengue pathophysiology studies in kidneys.

16.
Sci Rep ; 11(1): 9723, 2021 05 06.
Article in English | MEDLINE | ID: mdl-33958631

ABSTRACT

Dengue (DEN) is the most prevalent arbovirus among humans, and four billion people live at risk of infection. The clinical manifestations of DEN are variable, and the disease may present subclinically or asymptomatically. A quarter of patients develop classical dengue (CD) or severe dengue (SD), which is potentially lethal and involves vascular permeability changes, severe hemorrhage and organ damage. The involvement of the liver is a fairly common feature in DEN, and alterations range from asymptomatic elevation of transaminases to acute liver failure. Since its introduction in Brazil in 1990, two strains of Dengue virus (DENV) serotype 2 (DENV-2) have been detected: Lineage I, which is responsible for an outbreak in 1991, and Lineage II, which caused an epidemic greater than the previous one and had a different epidemiological profile. To date, studies on different strains of the same serotype/genotype and their association with disease severity are scarce. In addition, one of the greatest challenges regarding the study of DEN pathogenesis and the development of drug and vaccine therapies is the absence of an animal model that reproduces the disease as it occurs in humans. The main goals of this study were to assess BALB/c mouse susceptibility experimentally infected by two distinct DENV-2 strains and characterize possible differences in the clinical signs and alterations induced in the liver resulting from those infections. Mice infected by the two DENV-2 lineages gained less weight than uninfected mice; however, their livers were slightly heavier. Increased AST and AST levels were observed in infected mice, and the number of platelets increased in the first 72 h of infection and subsequently decreased. Mice infected with both lineages presented leukocytosis but at different times of infection. The histopathological changes induced by both lineages were similar and comparable to the changes observed in DEN fatal cases. The viral genome was detected in two liver samples. The results demonstrate the susceptibility of BALB/c mice to both DENV-2 lineages and suggest that the changes induced by those strains are similar, although for some parameters, they are manifested at different times of infection.


Subject(s)
Dengue Virus/pathogenicity , Liver/virology , Animals , Body Temperature , Body Weight , Dengue Virus/classification , Disease Models, Animal , Immunocompetence , Liver/physiopathology , Liver Function Tests , Mice , Mice, Inbred BALB C , Organ Size
17.
PLoS One ; 16(3): e0248578, 2021.
Article in English | MEDLINE | ID: mdl-33765012

ABSTRACT

The epidemic of coronavirus disease 2019 (COVID-19), caused by a novel Betacoronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) became a public health emergency worldwide. Few reports indicate that owned pets from households with at least one human resident that was diagnosed with COVID-19 can be infected by SARS-CoV-2. However, the exposure to SARS-CoV-2 of pets from households with no COVID-19 cases or stray animals remains less assessed. Using real-time reverse transcriptase polymerase chain reaction (RT-PCR) and plaque reduction neutralization test (PRNT90), we investigated the infection and previous exposure of dogs and cats to SARS-CoV-2 during the ongoing COVID-19 epidemic in Rio de Janeiro, Brazil. From June to August 2020, 96 animals were sampled, including 49 cats (40 owned and 9 stray) and 47 dogs (42 owned and 5 stray). Regarding owned pets, 75.6% (62/82) belonged to households with no COVID-19 cases. Samples included serum, and rectal and oropharyngeal swabs. All swabs were negative for SARS-CoV-2 RNA, but serum samples of a stray cat and a stray dog presented neutralizing antibodies for SARS-CoV-2, with PRNT90 titer of 80 and 40, respectively. Serological data presented here suggest that not only owned pets from households with COVID19 cases, but also stray animals are being exposed to SARS-CoV-2 during the COVID-19 pandemic.


Subject(s)
Antibodies, Neutralizing/blood , SARS-CoV-2/immunology , Animals , COVID-19/pathology , COVID-19/virology , Cat Diseases/pathology , Cat Diseases/virology , Cats , Dog Diseases/pathology , Dog Diseases/virology , Dogs , Female , Male , Oropharynx/virology , RNA, Viral/metabolism , Rectum/virology , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification
18.
Mem Inst Oswaldo Cruz ; 115: e200278, 2021.
Article in English | MEDLINE | ID: mdl-33566939

ABSTRACT

BACKGROUND: The impact of arbovirus cocirculation in Brazil is unknown. Dengue virus (DENV) reinfection may result in more intense viraemia or immunopathology, leading to more severe disease. The Zika virus (ZIKV) epidemic in the Americas provided pathogenicity evidence that had not been previously observed in flavivirus infections. In contrast to other flaviviruses, electron microscopy studies have shown that ZIKV may replicate in viroplasm-like structures. Flaviviruses produce an ensemble of structurally different virions, collectively contributing to tissue tropism and virus dissemination. OBJECTIVES AND METHODS: In this work, the Aedes albopictus mosquito cell lineage (C6/36 cells) and kidney epithelial cells from African green monkeys (Vero cells) were infected with samples of the main circulating arboviruses in Brazil [DENV-1, DENV-2, DENV-3, DENV-4, ZIKV, Yellow Fever virus (YFV) and Chikungunya virus (CHIKV)], and ultrastructural studies by transmission electron microscopy were performed. FINDINGS: We observed that ZIKV, the DENV serotypes, YFV and CHIKV particles are spherical. ZIKV, DENV-1, -2, -3 and -4 presented diameters of 40-50 nm, and CHIKV presented approximate diameters of 50-60 nm. Viroplasm-like structures was observed in ZIKV replication cycle. MAIN CONCLUSIONS: The morphogenesis of these arboviruses is similar to what has been presented in previous studies. However, we understand that further studies are needed to investigate the relationship between viroplasm-like structures and ZIKV replication dynamics.


Subject(s)
Arboviruses , Chikungunya Fever , Dengue , Epidemics , Yellow Fever , Zika Virus Infection , Zika Virus , Animals , Brazil/epidemiology , Chikungunya Fever/epidemiology , Chlorocebus aethiops , Dengue/epidemiology , Vero Cells , Zika Virus Infection/epidemiology
20.
Eur J Case Rep Intern Med ; 6(6): 001088, 2019.
Article in English | MEDLINE | ID: mdl-31293989

ABSTRACT

Langerhans cell histiocytosis (LCH) is a multisystemic disorder that results from the clonal proliferation of immunophenotypically and functionally immature Langerhans cells (LC). The detection of the V600E mutation in the BRAF oncogene in LCH biopsy specimens supports previous evidence that LCH is a neoplastic disorder. This mutation is present in other cutaneous lesions including malignant melanoma and benign nevi. Single case reports of a correlation between LCH and the appearance of eruptive nevi limited to the inguinal folds after chemotherapy have previously been described in the literature. This suggested that LCH could be an additional cause of eruptive melanocytic nevi, with a specific distribution mimicking that of LCH cutaneous lesions. We present the case of a 6-year-old boy, previously treated with chemotherapy for Langerhans cell histiocytosis, with disseminated junctional nevi. Although this co-occurrence may be coincidental, the skin involvement is distinct from other previously reported clinical cases. It would be interesting to evaluate whether the BRAF mutation described in LCH cells might in fact support a genetic background for the development of nevi in these patients. LEARNING POINTS: Langerhans cell histiocytosis (LCH) is a clonal neoplastic proliferation of immature Langerhans cells, with the V600E mutation in the BRAF oncogene present in approximately 60% of cases.The V600E mutation in the BRAF oncogene is also documented in other cutaneous lesions, namely malignant melanoma and benign nevi.There are case reports of a correlation between LCH and the appearance of eruptive nevi after chemotherapy, but it is not known whether the BRAF mutation described in LCH cells supports a genetic background for the development of nevi in these patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...