Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 109(43): 20433-43, 2005 Nov 03.
Article in English | MEDLINE | ID: mdl-16853644

ABSTRACT

Boron-dipyrrin chromophores containing a 5-aryl group with or without internal steric hindrance toward aryl rotation have been synthesized and then characterized via X-ray diffraction, static and time-resolved optical spectroscopy, and theory. Compounds with a 5-phenyl or 5-(4-tert-butylphenyl) group show low fluorescence yields (approximately 0.06) and short excited-singlet-state lifetimes (approximately 500 ps), and decay primarily (>90%) by nonradiative internal conversion to the ground state. In contrast, sterically hindered analogues having an o-tolyl or mesityl group at the 5-position exhibit high fluorescence yields (approximately 0.9) and long excited-state lifetimes (approximately 6 ns). The X-ray structures indicate that the phenyl or 4-tert-butylphenyl ring lies at an angle of approximately 60 degrees with respect to the dipyrrin framework whereas the angle is approximately 80 degrees for mesityl or o-tolyl groups. The calculated potential energy surface for the phenyl-substituted complex indicates that the excited state has a second, lower energy minimum in which the nonhindered aryl ring rotates closer to the mean plane of the dipyrrin, which itself undergoes some distortion. This relaxed, distorted excited-state conformation has low radiative probability as well as a reduced energy gap from the ground state supporting a favorable vibrational overlap factor for nonradiative deactivation. Such a distorted conformation is energetically inaccessible in a complex bearing the sterically hindered o-tolyl or mesityl group at the 5-position, leading to a high radiative probability involving conformations at or near the initial Franck-Condon form of the excited state. These combined results demonstrate the critical role of aryl-ring rotation in governing the excited-state dynamics of this class of widely used dyes.


Subject(s)
Boron/chemistry , Photochemistry/methods , Pyrroles/chemistry , Models, Chemical , Models, Molecular , Molecular Conformation , Solutions , Spectrometry, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL
...