Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 101
Filter
1.
Foods ; 13(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731696

ABSTRACT

Spray-drying is a commonly used method for producing powdered flavors, but the high temperatures involved often result in the loss of volatile molecules. To address this issue, our study focused on a novel approach: developing O/W Pickering emulsions with agri-food byproducts to encapsulate and protect D-limonene during spray-drying and storage. Emulsions formulated with lupin hull, lupin-byproduct (a water-insoluble protein-fiber byproduct derived from the production of lupin protein isolate), and camelina press-cake were subjected to spray-drying at 160 °C. The results revealed that these emulsions exhibited good stability against creaming. The characteristics of the dry emulsions (powders) were influenced by the concentration of byproducts. Quantitative analysis revealed that Pickering emulsions enhanced the retention of D-limonene during spray-drying, with the highest retention achieved using 3% lupin hull and 1% camelina press-cake. Notably, lupin-stabilized emulsions yielded powders with enhanced oxidative stability compared to those stabilized with camelina press-cake. Our findings highlight the potential of food-grade Pickering emulsions to improve the stability of volatile flavors during both processing and storage.

2.
Food Chem X ; 21: 101214, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38379805

ABSTRACT

The study explores diverse strains of Lachancea thermotolerans in single-inoculum wine fermentation conditions using synthetic grape must. It aims to analyze the role of the species without external influences like other microorganisms or natural grape must variability. Commercial strains and selected vineyard isolates, untested together previously, are assessed. The research evaluates volatile and non-volatile chemical compounds in final wine, revealing significant strain-based variations. L. thermotolerans notably produces lactic acid and consumes malic acid, exhibiting moderate ethanol levels. The volatile profile displays strain-specific impacts, affecting higher alcohol and ester concentrations compared to S. cerevisiae. These effects vary based on the specific compounds. Using a uniform synthetic must enables direct strain comparisons, eliminating grape-related, environmental, or timing variables in the experiment, facilitating clearer insights into the behavior of L. thermotolerans in wine fermentation. The study compares for the first time all available commercial strains of L. thermotolerans.

3.
Food Chem ; 443: 138522, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38277931

ABSTRACT

We performed a nanoscale study based on X-ray scattering to understand the impact of a promotor of crystallization, palmitic acid (PA), at high concentration, on the networks of triacylglycerols (TAGs) in anhydrous milk fat (AMF). Melted blends containing 10 wt% PA were quenched at 25 °C. X-ray scattering data were compared with those obtained for pure AMF, pure PA, and AMF containing 1 wt% PA. While PA at low concentration did not modify the nanostructure of TAG crystals (direct crystallization in the ß'-2L form), a high concentration of this promotor favored the formation of polymorphic forms suggesting that PA first crystallizes and then directs crystallization of AMF TAGs towards α and ß forms.


Subject(s)
Milk , Palmitic Acid , Animals , Palmitic Acid/analysis , Milk/chemistry , Triglycerides/chemistry , Crystallization
4.
PLoS One ; 18(5): e0285414, 2023.
Article in English | MEDLINE | ID: mdl-37167315

ABSTRACT

Manual segmentation, which is tedious, time-consuming, and operator-dependent, is currently used as the gold standard to validate automatic and semiautomatic methods that quantify geometries from 2D and 3D MR images. This study examines the accuracy of manual segmentation and generalizes a strategy to eliminate its use. Trained individuals manually measured MR lateral ventricles images of normal and hydrocephalus infants from 1 month to 9.5 years of age. We created 3D-printed models of the lateral ventricles from the MRI studies and accurately estimated their volume by water displacement. MRI phantoms were made from the 3D models and images obtained. Using a previously developed artificial intelligence (AI) algorithm that employs four features extracted from the images, we estimated the ventricular volume of the phantom images. The algorithm was certified when discrepancies between the volumes-gold standards-yielded by the water displacement device and those measured by the automation were smaller than 2%. Then, we compared volumes after manual segmentation with those obtained with the certified automation. As determined by manual segmentation, lateral ventricular volume yielded an inter and intra-operator variation up to 50% and 48%, respectively, while manually segmenting saggital images generated errors up to 71%. These errors were determined by direct comparisons with the volumes yielded by the certified automation. The errors induced by manual segmentation are large enough to adversely affect decisions that may lead to less-than-optimal treatment; therefore, we suggest avoiding manual segmentation whenever possible.


Subject(s)
Artificial Intelligence , Lateral Ventricles , Infant , Humans , Reproducibility of Results , Magnetic Resonance Imaging/methods , Imaging, Three-Dimensional/methods , Algorithms , Image Processing, Computer-Assisted/methods
5.
Appl Intell (Dordr) ; 53(3): 2673-2693, 2023.
Article in English | MEDLINE | ID: mdl-35578619

ABSTRACT

Microblogs generate a vast amount of data in which users express their emotions regarding almost all aspects of everyday life. Capturing affective content from these context-dependent and subjective texts is a challenging task. We propose an intelligent probabilistic model for textual emotion recognition in multidimensional space (TERMS) that captures the subjective emotional boundaries and contextual information embedded in a text for robust emotion recognition. It is implausible with discrete label assignment;therefore, the model employs a soft assignment by mapping varying emotional perceptions in a multidimensional space and generates them as distributions via the Gaussian mixture model (GMM). To strengthen emotion distributions, TERMS integrates a probabilistic emotion classifier that captures the contextual and linguistic information from texts. The integration of these aspects, the context-aware emotion classifier and the learned GMM parameters provide a complete coverage for accurate emotion recognition. The large-scale experimentation shows that compared to baseline and state-of-the-art models, TERMS achieved better performance in terms of distinguishability, prediction, and classification performance. In addition, TERMS provide insights on emotion classes, the annotation patterns, and the models application in different scenarios.

6.
FEMS Yeast Res ; 232023 01 04.
Article in English | MEDLINE | ID: mdl-36494201

ABSTRACT

The study performed sequential fermentations of red grape juice using several strains of Lachancea thermotolerans and one strain of Saccharomyces cerevisiae. Due to the new conditions imposed by climate change, wine acidity must be affected as well as the volatile profile. Non-Saccharomyces yeasts such as L. thermotolerans are real alternatives to soften the impact of climate change in winemaking. The L. thermotolerans strains included three commercially available strains and two wine-related natural isolates. L. thermotolerans showed significant statistical differences in basic chemical parameters such as lactic acid, malic acid, or ethanol concentrations as well as in the volatile profile. S. cerevisiae clearly produced some volatile compounds in higher amounts than the studied L. thermotolerans strains while others showed the opposite effect. Sequential fermentations involving any of the studied strains of L. thermotolerans with S. cerevisiae showed an increased volatile profile compared to the S. ceresisiae single fermentation, highlighting the synergic effect between the studied species.


Subject(s)
Saccharomycetales , Vitis , Wine , Wine/analysis , Saccharomyces cerevisiae , Fermentation
7.
Sci Rep ; 12(1): 12115, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35840587

ABSTRACT

The size/volume of the brain's ventricles is essential in diagnosing and treating many neurological disorders, with various forms of hydrocephalus being some of the most common. Initial ventricular size and changes, if any, in response to disease progression or therapeutic intervention are monitored by serial imaging methods. Significant variance in ventricular size is readily noted, but small incremental changes can be challenging to appreciate. We have previously reported using artificial intelligence to determine ventricular volume. The values obtained were compared with those calculated using the inaccurate manual segmentation as the "gold standard". This document introduces a strategy to measure ventricular volumes where manual segmentation is not employed to validate the estimations. Instead, we created 3D printed models that mimic the lateral ventricles and measured those 3D models' volume with a tuned water displacement device. The 3D models are placed in a gel and taken to the magnetic resonance scanner. Images extracted from the phantoms are fed to an artificial intelligence-based algorithm. The volumes yielded by the automation must equal those yielded by water displacement to assert validation. Then, we provide certified volumes for subjects in the age range (1-114) months old and two hydrocephalus patients.


Subject(s)
Hydrocephalus , Lateral Ventricles , Artificial Intelligence , Cerebral Ventricles/diagnostic imaging , Cerebral Ventricles/pathology , Child , Child, Preschool , Humans , Hydrocephalus/diagnostic imaging , Hydrocephalus/pathology , Infant , Lateral Ventricles/diagnostic imaging , Lateral Ventricles/pathology , Magnetic Resonance Imaging/methods , Water
8.
Int J Food Microbiol ; 375: 109726, 2022 Aug 16.
Article in English | MEDLINE | ID: mdl-35635990

ABSTRACT

Climate change is generating several problems in wine technology. One of the main ones is lack of acidity and difficulties performing malolactic fermentation to stabilize wines before bottling. Among the different available acidity management technologies, such as direct acid addition, ion exchange resins, electro-membrane treatments, or vineyard management, the microbiological option is reliable and deeply studied. The main approach is the increase in malic acid content because of the metabolism of specific Saccharomyces strains and to increase lactic acid because of the metabolism of Lachancea genus. Other non-Saccharomyces yeasts, such as Starmerella bacillaris or Candida stellata can also acidify significantly because of the production of pyruvic or succinic acid. Wine industry needs the removal of malic acid in most red wines before bottling to achieve wine stability. Oenococus oeni performs the malolactic fermentation of red wines on most conditions because of the metabolization of malic acid into lactic acid. However, modern oenology challenges such as high ethanol concentrations, high pH or low levels of malic acid have made researchers to look for other options to reduce potential risks of deviation. Other wine-related microorganisms able to de-acidify malic acid have appeared as interesting alternatives for specific difficult scenarios. Lactiplantibacillus plantarum and Schizosaccharomyces genus make up nowadays the main studied alternatives.


Subject(s)
Oenococcus , Schizosaccharomyces , Wine , Ethanol/metabolism , Fermentation , Lactic Acid/metabolism , Malates/metabolism , Oenococcus/metabolism , Schizosaccharomyces/metabolism , Wine/microbiology
9.
Food Chem ; 389: 133072, 2022 Sep 30.
Article in English | MEDLINE | ID: mdl-35490523

ABSTRACT

Propolis has many benefits for human health. To facilitate its oral consumption, we designed propolis-in-water dispersions to be used as nutraceuticals. Propolis was first dissolved either in ethanol or in a hydroalcoholic solution. Water being a non-solvent for propolis, its addition produced propolis precipitation. We explored the ternary phase diagram of water, propolis and ethanol to identify the line separating the one phase region where propolis is fully dissolved, and the two-phase region where a concentrated propolis solution coexists with a dilute one. Droplets rich in propolis were produced during the phase separation process under mechanical stirring induced by a rotor-stator device or a microfluidizer, and they were stabilized using gum Arabic as an emulsifier. Ethanol was finally removed by distillation under reduced pressure. Propolis dispersions in the micron and submicron size range could be obtained. They contained between 1.75 and 10.5 wt% polyphenols relative to the total mass.


Subject(s)
Propolis , Emulsifying Agents , Ethanol , Gum Arabic/pharmacology , Humans , Propolis/pharmacology , Water
10.
F1000Res ; 11: 1570, 2022.
Article in English | MEDLINE | ID: mdl-36798112

ABSTRACT

The recent Coronavirus disease 2019 (COVID-19) pandemic displayed weaknesses in the healthcare infrastructures worldwide and exposed a lack of specialized personnel to cover the demands of a massive calamity. We have developed a portable ventilator that uses real-time vitals read from the patient to estimate -- through artificial intelligence -- the optimal operation point. The ventilator has redundant telecommunication capabilities; therefore, the remote assistance model can protect specialists and relatives from highly contagious agents. Additionally, we have designed a system that automatically publishes information in a proprietary cloud centralizer to keep physicians and relatives informed. The system was tested in a residential last-mile connection, and transaction times below the second were registered. The timing scheme allows us to operate up to 200 devices concurrently on these lowest-specification transmission control protocol/internet protocol (TCP/IP) services, promptly transmitting data for online processing and reporting. The ventilator is a proof of concept of automation that has behavioral and cognitive inputs to cheaply, yet reliably, extend the installed capacity of the healthcare systems and multiply the response of the skilled medical personnel to cover high-demanding scenarios and improve service quality.


Subject(s)
COVID-19 , Internet of Things , Humans , COVID-19/epidemiology , SARS-CoV-2 , Artificial Intelligence , Ventilators, Mechanical , Intensive Care Units , Technology
11.
Food Chem ; 366: 130533, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34274704

ABSTRACT

We performed a multiscale study to understand the impact of pure exogenous compounds at low concentration on the crystallization of triacylglycerols (TAGs) in anhydrous milk fat (AMF). We selected butyric acid, an inhibitor of crystallization, and palmitic acid, a promotor, to investigate the influence of the chain length. Tripalmitin was also used as a promotor to assess the impact of fatty acid esterification. Melted blends containing the additives (1 wt%) were quenched at 25 °C. X-ray scattering data showed that AMF TAGs crystallized directly in the ß'-2L form. The presence of additives did not modify the nanostructure of TAG crystals. However, they significantly altered the microstructure of AMF, as revealed by polarized light microscopy and rheology. This study emphasizes the interest of a multiscale approach to gain knowledge about the behavior of complex fat blends and of the use of modulators at low concentration to monitor their textural properties.


Subject(s)
Fatty Acids, Nonesterified , Nanostructures , Animals , Crystallization , Esters , Milk
12.
Food Chem ; 373(Pt B): 131605, 2022 Mar 30.
Article in English | MEDLINE | ID: mdl-34823932

ABSTRACT

We examined the crystallization and melting of anhydrous milk fat (AMF)-in-water emulsions stabilized by sodium caseinate. Various additives at low concentrations (<5 wt%), differing in their hydrocarbon chain length (propionic vs. palmitic acid), unsaturation (palmitic vs. oleic acid), and esterification state (palmitic acid vs. tripalmitin) were used to modulate AMF crystallization kinetics. Three emulsions with different average droplet diameters were cooled down from 60 °C to 4 °C. Fat crystallization was followed by DSC under dynamic (cooling) and static (isothermal) conditions. Propionic acid did not have any noticeable effect. Oleic acid favored supercooling and the formation of unstable polymorphs at short times but its impact faded after 48 h of isothermal storage. The impact of palmitic acid was related to its amphiphilic properties and vanished after 48 h. Tripalmitin influenced crystallization via volume effects that were persistent. It formed mixed crystals which extended the melting range of AMF.


Subject(s)
Caseins , Milk , Animals , Crystallization , Emulsions , Phase Transition
13.
Sensors (Basel) ; 21(23)2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34883861

ABSTRACT

The permanent transition to online activity has brought with it a surge in hate speech discourse. This has prompted increased calls for automatic detection methods, most of which currently rely on a dictionary of hate speech words, and supervised classification. This approach often falls short when dealing with newer words and phrases produced by online extremist communities. These code words are used with the aim of evading automatic detection by systems. Code words are frequently used and have benign meanings in regular discourse, for instance, "skypes, googles, bing, yahoos" are all examples of words that have a hidden hate speech meaning. Such overlap presents a challenge to the traditional keyword approach of collecting data that is specific to hate speech. In this work, we first introduced a word embedding model that learns the hidden hate speech meaning of words. With this insight on code words, we developed a classifier that leverages linguistic patterns to reduce the impact of individual words. The proposed method was evaluated across three different datasets to test its generalizability. The empirical results show that the linguistic patterns approach outperforms the baselines and enables further analysis on hate speech expressions.


Subject(s)
Hate , Speech , Language , Learning , Linguistics
14.
Foods ; 10(11)2021 Nov 21.
Article in English | MEDLINE | ID: mdl-34829158

ABSTRACT

The interest in Lachancea thermotolerans, a yeast species with unusual characteristics, has notably increased in all ecological, evolutionary, and industrial aspects. One of the key characteristics of L. thermotolerans is the production of high quantities of lactic acid compared to other yeast species. Its evolution has mainly been driven by the influence of the environment and domestication, allowing several metabolic traits to arise. The molecular regulation of the fermentative process in L. thermotolerans shows interesting routes that play a complementary or protective role against fermentative stresses. One route that is activated under this condition is involved in the production of lactic acid, presenting a complete system for its production, showing the involvement of several enzymes and transporters. In winemaking, the use of L. thermotolerans is nowadays mostly focused in early-medium-maturity grape varieties, in which over-ripening can produce wines lacking acidity and with high concentrations of ethanol. Recent studies have reported new positive influences on quality apart from lactic acid acidification, such as improvements in color, glutathione production, aroma, malic acid, polysaccharides, or specific enzymatic activities that constitute interesting new criteria for selecting better strains. This positive influence on winemaking has increased the availability of commercial strains during recent years, allowing comparisons among some of those products. Initially, the management of L. thermotolerans was thought to be combined with Saccaharomyces cerevisiae to properly end alcoholic fermentation, but new studies are innovating and reporting combinations with other key enological microorganisms such as Schizosaccharomyces pombe, Oenocous oeni, Lactiplantibacillus plantarum, or other non-Saccharomyces.

15.
Front Pediatr ; 9: 608122, 2021.
Article in English | MEDLINE | ID: mdl-34350141

ABSTRACT

This study describes an automatic technique to accurately determine the maximum head circumference (MHC) measurement from MRI studies within the Picture Archiving and Communications System, and can automatically add this measurement to the final radiology report. Participants were selected through a retrospective chart review of patients referred to the neurosurgery clinic. Forty-nine pediatric patients with ages ranging from 5 months to 11 years were included in the study. We created 14 printed ring structures to mirror the head circumference values at various ages along the x-axis of the Nellhaus chart. The 3D-printed structures were used to create MRI phantoms. Analytical obtainment of circumference values from the 3D objects and phantom images allowed for a fair estimation and correction of errors on the image-based-measuring instrument. Then, standard manual MHC measurements were performed and compared to values obtained from the patients' MRI T1 images using the tuned instrument proposed in this document. A T-test revealed no statistical difference between the manual assessments and the ones obtained by the automation p = 0.357, α = 0.05. This automatic application augments the more error-prone manual MHC measurement, and can add a numerical value to the final radiology report as a standard application.

16.
Foods ; 10(6)2021 Jun 13.
Article in English | MEDLINE | ID: mdl-34199225

ABSTRACT

Most commercialized red wines are produced through alcoholic fermentation performed by yeasts of the Saccharomyces genus, and a second fermentation performed by lactic bacteria of the Oenococus oeni species once the first is completely finished. However, the classical process can suffer complications, of which the risks can increase in grape juices with high contents of sugar and pH. Due to climate change, these situations are becoming more common in the winemaking industry. The main risks in those scenarios are alcoholic-fermentation stops or sluggish and undesirable bacteria development while alcoholic fermentation is not finished yet and wine still contains residual sugars. The study propose a novel alternative that offers a solution or reduces the risk of those scenarios while increasing acidity, which is another serious problem of warm viticulture regions. The alternative consists of the combined use of Lachancea thermotolerans to reduce the pH of musts that suffer from a lack of acidity, Lactiplantibacillus plantarum (formerly Lactobacillus plantarum) to achieve malic acid stability during the first stages of alcoholic fermentation, and Saccharomyces bayanus to complete the alcoholic fermentation in difficult wines of high potential alcohol degree of over 15% (v/v). The new proposed biotechnology produced wines with higher final concentrations in lactic acid, glycerol, color intensity, ethyl lactate and 2-phenyl ethyl acetate in 2.39 g/L, 0.52 g/L, 21%, 48% and 37% respectively than the classical methodology where Saccharomyces genus performs alcoholic fermentation and later Oenococus oeni performs malolactic fermentation. Additionally, the new alternative produced wines with lower concentration in ethanol, pH, acetic acid, ethyl acetate, diacetyl and 1-propanol in 0.37% (v/v), 0.26, 0.08 g/L, 22%, 69% and 28% respectively than the classic method.

17.
Cancers (Basel) ; 13(4)2021 Feb 18.
Article in English | MEDLINE | ID: mdl-33670655

ABSTRACT

BACKGROUND: Fascin1 is the key actin-bundling protein involved in cancer invasion and metastasis whose expression is associated with bad prognosis in tumor from different origins. METHODS: In the present study, virtual screening (VS) was performed for the search of Fascin1 inhibitors and RAL, an FDA-approved inhibitor of human immunodeficiency virus-1 (HIV-1) integrase, was identified as a potential Fascin1 inhibitor. Biophysical techniques including nuclear magnetic resonance (NMR) and differential scanning fluorimetry (DSF) were carried out in order to confirm RAL as a Fascin1 blocker. The effect of RAL on actin-bundling activity Fascin1 was assessed by transmission electron microscopy (TEM), immunofluorescence, migration, and invasion assays on two human colorectal adenocarcinoma cell lines: HCT-116 and DLD-1. In addition, the anti-metastatic potential of RAL was in vivo evaluated by using the zebrafish animal model. RESULTS: NMR and DSF confirmed in silico predictions and TEM demonstrated the RAL-induced disorganization of the actin structure compared to control conditions. The protrusion of lamellipodia in cancer cell line overexpressing Fascin1 (HCT-116) was abolished in the presence of this drug. By following the addition of RAL, migration of HCT-116 and DLD-1 cell lines was significantly inhibited. Finally, using endogenous and exogenous models of Fascin1 expression, the invasive capacity of colorectal tumor cells was notably impaired in the presence of RAL in vivo assays; without undesirable cytotoxic effects. CONCLUSION: The current data show the in vitro and in vivo efficacy of the antiretroviral drug RAL in inhibiting human colorectal cancer cells invasion and metastasis in a Fascin1-dependent manner.

18.
Int J Mol Sci ; 22(3)2021 Jan 26.
Article in English | MEDLINE | ID: mdl-33530422

ABSTRACT

The surfaces of grapes are covered by different yeast species that are important in the first stages of the fermentation process. In recent years, non-Saccharomyces yeasts such as Torulaspora delbrueckii, Lachancea thermotolerans, Metschnikowia pulcherrima, and Pichia kluyveri have become popular with regard to winemaking and improved wine quality. For that reason, several manufacturers started to offer commercially available strains of these non-Saccharomyces species. P. kluyveri stands out, mainly due to its contribution to wine aroma, glycerol, ethanol yield, and killer factor. The metabolism of the yeast allows it to increase volatile molecules such as esters and varietal thiols (aroma-active compounds), which increase the quality of specific varietal wines or neutral ones. It is considered a low- or non-fermentative yeast, so subsequent inoculation of a more fermentative yeast such as Saccharomyces cerevisiae is indispensable to achieve a proper fermented alcohol. The impact of P. kluyveri is not limited to the grape wine industry; it has also been successfully employed in beer, cider, durian, and tequila fermentation, among others, acting as a promising tool in those fermentation processes. Although no Pichia species other than P. kluyveri is available in the regular market, several recent scientific studies show interesting improvements in some wine quality parameters such as aroma, polysaccharides, acid management, and color stability. This could motivate yeast manufacturers to develop products based on those species in the near future.


Subject(s)
Bioengineering , Fermentation , Industrial Microbiology , Pichia/metabolism , Wine , Bioengineering/methods , Ecology , Food Quality , Pichia/classification , Vitis/chemistry , Vitis/microbiology , Wine/analysis , Wine/standards
19.
Microorganisms ; 8(7)2020 Jul 13.
Article in English | MEDLINE | ID: mdl-32668690

ABSTRACT

Over the last decade, several non-Saccharomyces species have been used as an alternative yeast for producing wines with sensorial properties that are distinctive in comparison to those produced using only Saccharomyces cerevisiae as the classical inoculum. Among the non-Saccharomyces wine yeasts, Metschnikowia is one of the most investigated genera due to its widespread occurrence and its impact in winemaking, and it has been found in grapevine phyllospheres, fruit flies, grapes, and wine fermentations as being part of the resident microbiota of wineries and wine-making equipment. The versatility that allows some Metschnikowia species to be used for winemaking relies on an ability to grow in combination with other yeast species, such as S. cerevisiae, during the first stages of wine fermentation, thereby modulating the synthesis of secondary metabolites during fermentation in order to improve the sensory profile of the wine. Metschnikowia exerts a moderate fermentation power, some interesting enzymatic activities involving aromatic and color precursors, and potential antimicrobial activity against spoilage yeasts and fungi, resulting in this yeast being considered an interesting tool for use in the improvement of wine quality. The abovementioned properties have mostly been determined from studies on Metschnikowia pulcherrima wine strains. However, M. fructicola and M. viticola have also recently been studied for winemaking purposes.

20.
Food Res Int ; 134: 109244, 2020 08.
Article in English | MEDLINE | ID: mdl-32517928

ABSTRACT

The use of astaxanthin as a food ingredient is limited due to its poor water solubility in aqueous matrices and highly susceptibility to oxidation; hence microencapsulation of this carotenoid is an appropriate technique to increase its stability and functionally. In this study, astaxanthin oleoresin was encapsulated using a food-grade Pickering emulsion to enhance its stability during spray-drying and storage and its bioaccessibility. The oil-in-water (O/W) emulsions were stabilized by protein-based aggregates obtained from a lupin protein-rich cultivar (AluProt-CGNA). The emulsions containing the astaxanthin microencapsulated in its oil phase (core material) were submitted to a spray-drying process at 160 °C and 140 °C. For this, blends of these protein-based aggregates (LP-APs) and maltodextrin (at different ratios) were used as wall material. The emulsion stability, microstructure, powder characteristics, oxidative stability and concentration of astaxanthin, encapsulation efficiency and bioaccessibility after spray-drying were investigated. The results showed that LP-APs exhibit a great potential to perform as stabilizers for Pickering emulsions. The formed O/W emulsions were highly stable against creaming at high concentrations of LP-APs. The results also indicated that spray-drying can be applied to prepare stable astaxanthin emulsions into powders with good oxidative stability. The astaxanthin content in dry emulsions under storage conditions (25 and 45 °C for 4 weeks) was higher in powders containing a higher LP-APs concentration. The encapsulation efficiency was higher than 90% with the emulsion stabilized with 6% of LP-APs. The bioaccessebility of reconstituted astaxanthin powder (with 6% LP-APs) was around 80%.


Subject(s)
Xanthophylls , Emulsions , Particle Size , Powders
SELECTION OF CITATIONS
SEARCH DETAIL
...