Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
WMJ ; 122(5): 444-449, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38180943

ABSTRACT

INTRODUCTION: There is a paucity of studies evaluating vaccine uptake in adults with neurological and musculoskeletal medical conditions. We sought to evaluate the rates of COVID-19 vaccine uptake in patients seen in an outpatient rehabilitation clinic. METHODS: We conducted a retrospective, single center study of adults seen at an outpatient rehabilitation clinic from December 1, 2020, through June 30, 2021, with an active Wisconsin Immunization Registry record. The primary outcome was completion of a COVID-19 primary vaccine series. RESULTS: Of 1362 patients, 83.3% completed a COVID-19 vaccination series. Younger patients had increased odds of not completing a COVID-19 vaccination series (mean [SD] 46.7 [14.7] vs 54.3 [15.8]; OR 1.03; 95% CI, 1.02-1.04; P < 0.001). Those who identified as non-White (1.88; 95% CI, 1.16-3.04; P = 0.010) or current smoker (1.85, 95% CI, 1.85-2.79; P = 0.004) had increased odds of not completing a COVID-19 vaccination series. Those who resided in rural ZIP codes (1.81; 95% CI, 1.35-2.43; P < 0.001), had not received a 2019-2020 influenza vaccine (5.13; 95% CI, 3.79-6.96; P < 0.001), or had lower comorbidity scores (2.95; 95% CI, 1.98-4.41; P < 0.001) had higher odds of not completing a COVID-19 vaccination series. CONCLUSIONS: There was a high rate of COVID-19 vaccine uptake among patients seen in a rehabilitation clinic, though racial, ethnic, and geographic differences did exist. Further studies are needed to determine why these disparities exist and investigate interventions to increase vaccine uptake in these populations.


Subject(s)
COVID-19 , Medicine , Adult , Humans , COVID-19 Vaccines , Retrospective Studies , COVID-19/epidemiology , COVID-19/prevention & control , Ambulatory Care Facilities
2.
Front Hum Neurosci ; 16: 725715, 2022.
Article in English | MEDLINE | ID: mdl-35874158

ABSTRACT

An increasing number of research teams are investigating the efficacy of brain-computer interface (BCI)-mediated interventions for promoting motor recovery following stroke. A growing body of evidence suggests that of the various BCI designs, most effective are those that deliver functional electrical stimulation (FES) of upper extremity (UE) muscles contingent on movement intent. More specifically, BCI-FES interventions utilize algorithms that isolate motor signals-user-generated intent-to-move neural activity recorded from cerebral cortical motor areas-to drive electrical stimulation of individual muscles or muscle synergies. BCI-FES interventions aim to recover sensorimotor function of an impaired extremity by facilitating and/or inducing long-term motor learning-related neuroplastic changes in appropriate control circuitry. We developed a non-invasive, electroencephalogram (EEG)-based BCI-FES system that delivers closed-loop neural activity-triggered electrical stimulation of targeted distal muscles while providing the user with multimodal sensory feedback. This BCI-FES system consists of three components: (1) EEG acquisition and signal processing to extract real-time volitional and task-dependent neural command signals from cerebral cortical motor areas, (2) FES of muscles of the impaired hand contingent on the motor cortical neural command signals, and (3) multimodal sensory feedback associated with performance of the behavioral task, including visual information, linked activation of somatosensory afferents through intact sensorimotor circuits, and electro-tactile stimulation of the tongue. In this report, we describe device parameters and intervention protocols of our BCI-FES system which, combined with standard physical rehabilitation approaches, has proven efficacious in treating UE motor impairment in stroke survivors, regardless of level of impairment and chronicity.

3.
Front Hum Neurosci ; 15: 725645, 2021.
Article in English | MEDLINE | ID: mdl-34776902

ABSTRACT

Stroke is a leading cause of acquired long-term upper extremity motor disability. Current standard of care trajectories fail to deliver sufficient motor rehabilitation to stroke survivors. Recent research suggests that use of brain-computer interface (BCI) devices improves motor function in stroke survivors, regardless of stroke severity and chronicity, and may induce and/or facilitate neuroplastic changes associated with motor rehabilitation. The present sub analyses of ongoing crossover-controlled trial NCT02098265 examine first whether, during movements of the affected hand compared to rest, ipsilesional Mu rhythm desynchronization of cerebral cortical sensorimotor areas [Brodmann's areas (BA) 1-7] is localized and tracks with changes in grip force strength. Secondly, we test the hypothesis that BCI intervention results in changes in frequency-specific directional flow of information transmission (direct path functional connectivity) in BA 1-7 by measuring changes in isolated effective coherence (iCoh) between cerebral cortical sensorimotor areas thought to relate to electrophysiological signatures of motor actions and motor learning. A sample of 16 stroke survivors with right hemisphere lesions (left hand motor impairment), received a maximum of 18-30 h of BCI intervention. Electroencephalograms were recorded during intervention sessions while outcome measures of motor function and capacity were assessed at baseline and completion of intervention. Greater desynchronization of Mu rhythm, during movements of the impaired hand compared to rest, were primarily localized to ipsilesional sensorimotor cortices (BA 1-7). In addition, increased Mu desynchronization in the ipsilesional primary motor cortex, Post vs. Pre BCI intervention, correlated significantly with improvements in hand function as assessed by grip force measurements. Moreover, the results show a significant change in the direction of causal information flow, as measured by iCoh, toward the ipsilesional motor (BA 4) and ipsilesional premotor cortices (BA 6) during BCI intervention. Significant iCoh increases from ipsilesional BA 4 to ipsilesional BA 6 were observed in both Mu [8-12 Hz] and Beta [18-26 Hz] frequency ranges. In summary, the present results are indicative of improvements in motor capacity and behavior, and they are consistent with the view that BCI-FES intervention improves functional motor capacity of the ipsilesional hemisphere and the impaired hand.

5.
Hosp Pediatr ; 10(9): 774-782, 2020 09.
Article in English | MEDLINE | ID: mdl-32759291

ABSTRACT

OBJECTIVES: Adults with chronic conditions originating in childhood experience ongoing hospitalizations; however, efforts to guide youth-adult transitions rarely address transitioning to adult-oriented inpatient care. Our objectives were to identify perceptions of clinical leaders on important and feasible inpatient transition activities and outcomes, including when, how, and for whom inpatient transition processes are needed. METHODS: Clinical leaders at US children's hospitals were surveyed between January and July 2016. Questionnaires were used to assess 21 inpatient transition activities and 13 outcomes. Perceptions about feasible and important outcome measures and appropriate patients and settings for activities were summarized. Each transition activity was categorized into one of the Six Core Elements (policy, tracking, readiness, planning, transfer, or completion). Associations between perceived transition activity importance or feasibility, hospital characteristics, and transition activity performance were evaluated. RESULTS: In total, 96 of 195 (49.2%) children's hospital leaders responded. The most important and feasible activities were identifying patients needing or overdue for transition, discussing transition timing with youth and/or families, and informing youth and/or families that future stays would be at an adult facility. Feasibility, but not importance, ratings were associated with current performance of transition activities. Inpatient transition activities were perceived to be important for children with medical and/or social complexity or high hospital use. Emergency department visits and patient experience during transition were top outcome measurement priorities. CONCLUSIONS: Children's hospital clinical leaders rated inpatient youth-adult transition activities and outcome measures as important and feasible; however, feasibility may ultimately drive implementation. This work should be used to inform initial research and quality improvement priorities, although additional stakeholder perspectives are needed.


Subject(s)
Hospitals, Pediatric , Inpatients , Adolescent , Adult , Child , Chronic Disease , Hospitalization , Humans , Quality Improvement
6.
Front Neurosci ; 12: 624, 2018.
Article in English | MEDLINE | ID: mdl-30271318

ABSTRACT

The primary goal of this work was to apply data-driven machine learning regression to assess if resting state functional connectivity (rs-FC) could estimate measures of behavioral domains in stroke subjects who completed brain-computer interface (BCI) intervention for motor rehabilitation. The study cohort consisted of 20 chronic-stage stroke subjects exhibiting persistent upper-extremity motor deficits who received the intervention using a closed-loop neurofeedback BCI device. Over the course of this intervention, resting state functional MRI scans were collected at four distinct time points: namely, pre-intervention, mid-intervention, post-intervention and 1-month after completion of intervention. Behavioral assessments were administered outside the scanner at each time-point to collect objective measures such as the Action Research Arm Test, Nine-Hole Peg Test, and Barthel Index as well as subjective measures including the Stroke Impact Scale. The present analysis focused on neuroplasticity and behavioral outcomes measured across pre-intervention, post-intervention and 1-month post-intervention to study immediate and carry-over effects. Rs-FC, changes in rs-FC within the motor network and the behavioral measures at preceding stages were used as input features and behavioral measures and associated changes at succeeding stages were used as outcomes for machine-learning-based support vector regression (SVR) models. Potential clinical confounding factors such as age, gender, lesion hemisphere, and stroke severity were included as additional features in each of the regression models. Sequential forward feature selection procedure narrowed the search for important correlates. Behavioral outcomes at preceding time-points outperformed rs-FC-based correlates. Rs-FC and changes associated with bilateral primary motor areas were found to be important correlates of across several behavioral outcomes and were stable upon inclusion of clinical variables as well. NIH Stroke Scale and motor impairment severity were the most influential clinical variables. Comparatively, linear SVR models aided in evaluation of contribution of individual correlates and seed regions while non-linear SVR models achieved higher performance in prediction of behavioral outcomes.

7.
Front Neurosci ; 12: 353, 2018.
Article in English | MEDLINE | ID: mdl-29896082

ABSTRACT

Interventional therapy using brain-computer interface (BCI) technology has shown promise in facilitating motor recovery in stroke survivors; however, the impact of this form of intervention on functional networks outside of the motor network specifically is not well-understood. Here, we investigated resting-state functional connectivity (rs-FC) in stroke participants undergoing BCI therapy across stages, namely pre- and post-intervention, to identify discriminative functional changes using a machine learning classifier with the goal of categorizing participants into one of the two therapy stages. Twenty chronic stroke participants with persistent upper-extremity motor impairment received neuromodulatory training using a closed-loop neurofeedback BCI device, and rs-functional MRI (rs-fMRI) scans were collected at four time points: pre-, mid-, post-, and 1 month post-therapy. To evaluate the peak effects of this intervention, rs-FC was analyzed from two specific stages, namely pre- and post-therapy. In total, 236 seeds spanning both motor and non-motor regions of the brain were computed at each stage. A univariate feature selection was applied to reduce the number of features followed by a principal component-based data transformation used by a linear binary support vector machine (SVM) classifier to classify each participant into a therapy stage. The SVM classifier achieved a cross-validation accuracy of 92.5% using a leave-one-out method. Outside of the motor network, seeds from the fronto-parietal task control, default mode, subcortical, and visual networks emerged as important contributors to the classification. Furthermore, a higher number of functional changes were observed to be strengthening from the pre- to post-therapy stage than the ones weakening, both of which involved motor and non-motor regions of the brain. These findings may provide new evidence to support the potential clinical utility of BCI therapy as a form of stroke rehabilitation that not only benefits motor recovery but also facilitates recovery in other brain networks. Moreover, delineation of stronger and weaker changes may inform more optimal designs of BCI interventional therapy so as to facilitate strengthened and suppress weakened changes in the recovery process.

8.
Front Hum Neurosci ; 10: 457, 2016.
Article in English | MEDLINE | ID: mdl-27695404

ABSTRACT

Background: Brain-computer interface (BCI) devices are being investigated for their application in stroke rehabilitation, but little is known about how structural changes in the motor system relate to behavioral measures with the use of these systems. Objective: This study examined relationships among diffusion tensor imaging (DTI)-derived metrics and with behavioral changes in stroke patients with and without BCI training. Methods: Stroke patients (n = 19) with upper extremity motor impairment were assessed using Stroke Impact Scale (SIS), Action Research Arm Test (ARAT), Nine-Hole Peg Test (9-HPT), and DTI scans. Ten subjects completed four assessments over a control period during which no training was administered. Seventeen subjects, including eight who completed the control period, completed four assessments over an experimental period during which subjects received interventional BCI training. Fractional anisotropy (FA) values were extracted from each corticospinal tract (CST) and transcallosal motor fibers for each scan. Results: No significant group by time interactions were identified at the group level in DTI or behavioral measures. During the control period, increases in contralesional CST FA and in asymmetric FA (aFA) correlated with poorer scores on SIS and 9-HPT. During the experimental period (with BCI training), increases in contralesional CST FA were correlated with improvements in 9-HPT while increases in aFA correlated with improvements in ARAT but with worsening 9-HPT performance; changes in transcallosal motor fibers positively correlated with those in the contralesional CST. All correlations p < 0.05 corrected. Conclusion: These findings suggest that the integrity of the contralesional CST may be used to track individual behavioral changes observed with BCI training after stroke.

10.
Front Hum Neurosci ; 9: 361, 2015.
Article in English | MEDLINE | ID: mdl-26157378

ABSTRACT

Brain-computer interfaces (BCIs) are an emerging novel technology for stroke rehabilitation. Little is known about how dose-response relationships for BCI therapies affect brain and behavior changes. We report preliminary results on stroke patients (n = 16, 11 M) with persistent upper extremity motor impairment who received therapy using a BCI system with functional electrical stimulation of the hand and tongue stimulation. We collected MRI scans and behavioral data using the Action Research Arm Test (ARAT), 9-Hole Peg Test (9-HPT), and Stroke Impact Scale (SIS) before, during, and after the therapy period. Using anatomical and functional MRI, we computed Laterality Index (LI) for brain activity in the motor network during impaired hand finger tapping. Changes from baseline LI and behavioral scores were assessed for relationships with dose, intensity, and frequency of BCI therapy. We found that gains in SIS Strength were directly responsive to BCI therapy: therapy dose and intensity correlated positively with increased SIS Strength (p ≤ 0.05), although no direct relationships were identified with ARAT or 9-HPT scores. We found behavioral measures that were not directly sensitive to differences in BCI therapy administration but were associated with concurrent brain changes correlated with BCI therapy administration parameters: therapy dose and intensity showed significant (p ≤ 0.05) or trending (0.05 < p < 0.1) negative correlations with LI changes, while therapy frequency did not affect LI. Reductions in LI were then correlated (p ≤ 0.05) with increased SIS Activities of Daily Living scores and improved 9-HPT performance. Therefore, some behavioral changes may be reflected by brain changes sensitive to differences in BCI therapy administration, while others such as SIS Strength may be directly responsive to BCI therapy administration. Data preliminarily suggest that when using BCI in stroke rehabilitation, therapy frequency may be less important than dose and intensity.

11.
Front Hum Neurosci ; 9: 195, 2015.
Article in English | MEDLINE | ID: mdl-25964753

ABSTRACT

Tracking and predicting motor outcomes is important in determining effective stroke rehabilitation strategies. Diffusion tensor imaging (DTI) allows for evaluation of the underlying structural integrity of brain white matter tracts and may serve as a potential biomarker for tracking and predicting motor recovery. In this study, we examined the longitudinal relationship between DTI measures of the posterior limb of the internal capsule (PLIC) and upper-limb motor outcomes in 13 stroke patients (median 20-month post-stroke) who completed up to 15 sessions of intervention using brain-computer interface (BCI) technology. Patients' upper-limb motor outcomes and PLIC DTI measures including fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD), and mean diffusivity (MD) were assessed longitudinally at four time points: pre-, mid-, immediately post- and 1-month-post intervention. DTI measures and ratios of each DTI measure comparing the ipsilesional and contralesional PLIC were correlated with patients' motor outcomes to examine the relationship between structural integrity of the PLIC and patients' motor recovery. We found that lower diffusivity and higher FA values of the ipsilesional PLIC were significantly correlated with better upper-limb motor function. Baseline DTI ratios were significantly correlated with motor outcomes measured immediately post and 1-month-post BCI interventions. A few patients achieved improvements in motor recovery meeting the minimum clinically important difference (MCID). These findings suggest that upper-limb motor recovery in stroke patients receiving BCI interventions relates to the microstructural status of the PLIC. Lower diffusivity and higher FA measures of the ipsilesional PLIC contribute toward better motor recovery in the stroke-affected upper-limb. DTI-derived measures may be a clinically useful biomarker in tracking and predicting motor recovery in stroke patients receiving BCI interventions.

12.
Front Neuroeng ; 7: 26, 2014.
Article in English | MEDLINE | ID: mdl-25076886

ABSTRACT

This study aims to examine the changes in task-related brain activity induced by rehabilitative therapy using brain-computer interface (BCI) technologies and whether these changes are relevant to functional gains achieved through the use of these therapies. Stroke patients with persistent upper-extremity motor deficits received interventional rehabilitation therapy using a closed-loop neurofeedback BCI device (n = 8) or no therapy (n = 6). Behavioral assessments using the Stroke Impact Scale, the Action Research Arm Test (ARAT), and the Nine-Hole Peg Test (9-HPT) as well as task-based fMRI scans were conducted before, during, after, and 1 month after therapy administration or at analogous intervals in the absence of therapy. Laterality Index (LI) values during finger tapping of each hand were calculated for each time point and assessed for correlation with behavioral outcomes. Brain activity during finger tapping of each hand shifted over the course of BCI therapy, but not in the absence of therapy, to greater involvement of the non-lesioned hemisphere (and lesser involvement of the stroke-lesioned hemisphere) as measured by LI. Moreover, changes from baseline LI values during finger tapping of the impaired hand were correlated with gains in both objective and subjective behavioral measures. These findings suggest that the administration of interventional BCI therapy can induce differential changes in brain activity patterns between the lesioned and non-lesioned hemispheres and that these brain changes are associated with changes in specific motor functions.

13.
Front Neuroeng ; 7: 31, 2014.
Article in English | MEDLINE | ID: mdl-25120466

ABSTRACT

The relationship of the structural integrity of white matter tracts and cortical activity to motor functional outcomes in stroke patients is of particular interest in understanding mechanisms of brain structural and functional changes while recovering from stroke. This study aims to probe these underlying mechanisms using diffusion tensor imaging (DTI) and fMRI measures. We examined the structural integrity of the posterior limb of the internal capsule (PLIC) using DTI and corticomotor activity using motor-task fMRI in stroke patients who completed up to 15 sessions of rehabilitation therapy using Brain-Computer Interface (BCI) technology. We hypothesized that (1) the structural integrity of PLIC and corticomotor activity are affected by stroke; (2) changes in structural integrity and corticomotor activity following BCI intervention are related to motor recovery; (3) there is a potential relationship between structural integrity and corticomotor activity. We found that (1) the ipsilesional PLIC showed significantly decreased fractional anisotropy (FA) values when compared to the contralesional PLIC; (2) lower ipsilesional PLIC-FA values were significantly associated with worse motor outcomes (i.e., ipsilesional PLIC-FA and motor outcomes were positively correlated.); (3) lower ipsilesional PLIC-FA values were significantly associated with greater ipsilesional corticomotor activity during impaired-finger-tapping-task fMRI (i.e., ipsilesional PLIC-FA and ipsilesional corticomotor activity were negatively correlated), with an overall bilateral pattern of corticomotor activity observed; and (4) baseline FA values predicted motor recovery assessed after BCI intervention. These findings suggest that (1) greater vs. lesser microstructural integrity of the ipsilesional PLIC may contribute toward better vs. poor motor recovery respectively in the stroke-affected limb and demand lesser vs. greater cortical activity respectively from the ipsilesional motor cortex; and that (2) PLIC-FA is a promising biomarker in tracking and predicting motor functional recovery in stroke patients receiving BCI intervention.

14.
Front Neuroeng ; 7: 18, 2014.
Article in English | MEDLINE | ID: mdl-25009491

ABSTRACT

Therapies involving new technologies such as brain-computer interfaces (BCI) are being studied to determine their potential for interventional rehabilitation after acute events such as stroke produce lasting impairments. While studies have examined the use of BCI devices by individuals with disabilities, many such devices are intended to address a specific limitation and have been studied when this limitation or disability is present in isolation. Little is known about the therapeutic potential of these devices for individuals with multiple disabilities with an acquired impairment overlaid on a secondary long-standing disability. We describe a case in which a male patient with congenital deafness suffered a right pontine ischemic stroke, resulting in persistent weakness of his left hand and arm. This patient volunteer completed four baseline assessments beginning at 4 months after stroke onset and subsequently underwent 6 weeks of interventional rehabilitation therapy using a closed-loop neurofeedback BCI device with visual, functional electrical stimulation, and tongue stimulation feedback modalities. Additional assessments were conducted at the midpoint of therapy, upon completion of therapy, and 1 month after completing all BCI therapy. Anatomical and functional MRI scans were obtained at each assessment, along with behavioral measures including the Stroke Impact Scale (SIS) and the Action Research Arm Test (ARAT). Clinically significant improvements in behavioral measures were noted over the course of BCI therapy, with more than 10 point gains in both the ARAT scores and scores for the SIS hand function domain. Neuroimaging during finger tapping of the impaired hand also showed changes in brain activation patterns associated with BCI therapy. This case study demonstrates the potential for individuals who have preexisting disability or possible atypical brain organization to learn to use a BCI system that may confer some rehabilitative benefit.

15.
Front Neuroeng ; 7: 25, 2014.
Article in English | MEDLINE | ID: mdl-25071547

ABSTRACT

Brain-computer interface (BCI) technology is being incorporated into new stroke rehabilitation devices, but little is known about brain changes associated with its use. We collected anatomical and functional MRI of nine stroke patients with persistent upper extremity motor impairment before, during, and after therapy using a BCI system. Subjects were asked to perform finger tapping of the impaired hand during fMRI. Action Research Arm Test (ARAT), 9-Hole Peg Test (9-HPT), and Stroke Impact Scale (SIS) domains of Hand Function (HF) and Activities of Daily Living (ADL) were also assessed. Group-level analyses examined changes in whole-brain task-based functional connectivity (FC) to seed regions in the motor network observed during and after BCI therapy. Whole-brain FC analyses seeded in each thalamus showed FC increases from baseline at mid-therapy and post-therapy (p < 0.05). Changes in FC between seeds at both the network and the connection levels were examined for correlations with changes in behavioral measures. Average motor network FC was increased post-therapy, and changes in average network FC correlated (p < 0.05) with changes in performance on ARAT (R (2) = 0.21), 9-HPT (R (2) = 0.41), SIS HF (R (2) = 0.27), and SIS ADL (R (2) = 0.40). Multiple individual connections within the motor network were found to correlate in change from baseline with changes in behavioral measures. Many of these connections involved the thalamus, with change in each of four behavioral measures significantly correlating with change from baseline FC of at least one thalamic connection. These preliminary results show changes in FC that occur with the administration of rehabilitative therapy using a BCI system. The correlations noted between changes in FC measures and changes in behavioral outcomes indicate that both adaptive and maladaptive changes in FC may develop with this therapy and also suggest a brain-behavior relationship that may be stimulated by the neuromodulatory component of BCI therapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...