Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Med Chem ; 62(10): 5025-5039, 2019 05 23.
Article in English | MEDLINE | ID: mdl-30939017

ABSTRACT

Co- and post-translational processing are crucial maturation steps to generate functional proteins. MetAP-2 plays an important role in this process, and inhibition of its proteolytic activity has been shown to be important for angiogenesis and tumor growth, suggesting that small-molecule inhibitors of MetAP-2 may be promising options for the treatment of cancer. This work describes the discovery and structure-based hit optimization of a novel MetAP-2 inhibitory scaffold. Of critical importance, a cyclic tartronic diamide coordinates the MetAP-2 metal ion in the active site while additional side chains of the molecule were designed to occupy the lipophilic methionine side chain recognition pocket as well as the shallow cavity at the opening of the active site. The racemic screening hit from HTS campaign 11a was discovered with an enzymatic IC50 of 150 nM. The resynthesized eutomer confirmed this activity and inhibited HUVEC proliferation with an IC50 of 1.9 µM. Its structural analysis revealed a sophisticated interaction pattern of polar and lipophilic contacts that were used to improve cellular potency to an IC50 of 15 nM. In parallel, the molecular properties were optimized on plasma exposure and antitumor efficacy which led to the identification of advanced lead 21.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Methionyl Aminopeptidases/antagonists & inhibitors , Protease Inhibitors/chemical synthesis , Protease Inhibitors/pharmacology , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Discovery , Female , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Male , Metals/chemistry , Methionine/chemistry , Mice, Nude , Molecular Conformation , Structure-Activity Relationship
2.
Bioorg Med Chem Lett ; 26(13): 3073-3080, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27217002

ABSTRACT

A combined screening strategy using HTS together with focused kinase library and virtual screening led to the identification of diverse chemical series as PDK1 inhibitors. We focused our medicinal chemistry efforts on 7-azaindoles with low micromolar IC50s (e.g., 16: IC50=1.1µM) in the biochemical PDK1 assay. Our structure-guided optimization efforts considered also PDK1 X-ray structures with weaker binding fragments and resulted in 7-azaindoles with significantly improved biochemical PDK1 potency in the two-digit nanomolar range. However, the most potent analogues only showed moderate activities in a cellular mechanistic assay (42: IC50=2.3µM) together with either low microsomal stability or low permeability. The described structure-activity relationship together with PDK1 X-ray structures and early ADME data provided the basis for our subsequent hit-to-lead program.


Subject(s)
Drug Discovery , Indoles/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Crystallography, X-Ray , Dose-Response Relationship, Drug , Humans , Indoles/chemical synthesis , Indoles/chemistry , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/metabolism , Pyruvate Dehydrogenase Acetyl-Transferring Kinase , Structure-Activity Relationship
3.
J Med Chem ; 59(3): 1078-101, 2016 Feb 11.
Article in English | MEDLINE | ID: mdl-26796641

ABSTRACT

The Mediator complex-associated cyclin-dependent kinase CDK8 has been implicated in human disease, particularly in colorectal cancer where it has been reported as a putative oncogene. Here we report the discovery of 109 (CCT251921), a potent, selective, and orally bioavailable inhibitor of CDK8 with equipotent affinity for CDK19. We describe a structure-based design approach leading to the discovery of a 3,4,5-trisubstituted-2-aminopyridine series and present the application of physicochemical property analyses to successfully reduce in vivo metabolic clearance, minimize transporter-mediated biliary elimination while maintaining acceptable aqueous solubility. Compound 109 affords the optimal compromise of in vitro biochemical, pharmacokinetic, and physicochemical properties and is suitable for progression to animal models of cancer.


Subject(s)
Aminopyridines/pharmacology , Cyclin-Dependent Kinase 8/antagonists & inhibitors , Cyclin-Dependent Kinases/antagonists & inhibitors , Drug Discovery , Small Molecule Libraries/pharmacology , Administration, Oral , Aminopyridines/administration & dosage , Aminopyridines/chemistry , Animals , Biological Availability , Caco-2 Cells , Cyclin-Dependent Kinase 8/metabolism , Cyclin-Dependent Kinases/metabolism , Dogs , Dose-Response Relationship, Drug , Female , Humans , Male , Mice , Models, Molecular , Molecular Structure , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Rats , Rats, Wistar , Small Molecule Libraries/administration & dosage , Small Molecule Libraries/chemistry , Solubility , Structure-Activity Relationship , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...