Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 618(7966): 721-726, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37344648

ABSTRACT

The combination of optical time transfer and optical clocks opens up the possibility of large-scale free-space networks that connect both ground-based optical clocks and future space-based optical clocks. Such networks promise better tests of general relativity1-3, dark-matter searches4 and gravitational-wave detection5. The ability to connect optical clocks to a distant satellite could enable space-based very long baseline interferometry6,7, advanced satellite navigation8, clock-based geodesy2,9,10 and thousandfold improvements in intercontinental time dissemination11,12. Thus far, only optical clocks have pushed towards quantum-limited performance13. By contrast, optical time transfer has not operated at the analogous quantum limit set by the number of received photons. Here we demonstrate time transfer with near quantum-limited acquisition and timing at 10,000 times lower received power than previous approaches14-24. Over 300 km between mountaintops in Hawaii with launched powers as low as 40 µW, distant sites are synchronized to 320 attoseconds. This nearly quantum-limited operation is critical for long-distance free-space links in which photons are few and amplification costly: at 4.0 mW transmit power, this approach can support 102 dB link loss, more than sufficient for future time transfer to geosynchronous orbits.

2.
Nature ; 610(7933): 667-673, 2022 10.
Article in English | MEDLINE | ID: mdl-36198795

ABSTRACT

Two decades after its invention, the classic self-referenced frequency comb laser is an unrivalled ruler for frequency, time and distance metrology owing to the rigid spacing of its optical output1,2. As a consequence, it is now used in numerous sensing applications that require a combination of high bandwidth and high precision3-5. Many of these applications, however, are limited by the trade-offs inherent in the rigidity of the comb output and operate far from quantum-limited sensitivity. Here we demonstrate an agile programmable frequency comb where the pulse time and phase are digitally controlled with ±2-attosecond accuracy. This agility enables quantum-limited sensitivity in sensing applications as the programmable comb can be configured to coherently track weak returning pulse trains at the shot-noise limit. To highlight its capabilities, we use this programmable comb in a ranging system, reducing the required power to reach a given precision by about 5,000-fold compared with a conventional dual-comb system. This enables ranging at a mean photon per pulse number of 1/77 while retaining the full accuracy and precision of a rigid frequency comb. Beyond ranging and imaging6-12, applications in time and frequency metrology1,2,5,13-23, comb-based spectroscopy24-32, pump-probe experiments33 and compressive sensing34,35 should benefit from coherent control of the comb-pulse time and phase.

3.
Opt Express ; 28(18): 26661-26675, 2020 Aug 31.
Article in English | MEDLINE | ID: mdl-32906936

ABSTRACT

During propagation through atmospheric turbulence, variations in the refractive index of air cause fluctuations in the time-of-flight of laser light. These timing jitter fluctuations are a major noise source for precision laser ranging, optical time transfer, and long-baseline interferometry. While there exist models that estimate the turbulence-induced timing jitter power spectra using parameters obtainable from conventional micrometeorological instruments, a direct and independent comparison of these models to measured timing jitter data has not been done. Here we perform this comparison, measuring turbulence-induced optical pulse timing jitter over a horizontal, near-ground path using frequency comb lasers while independently characterizing the turbulence along the path using a suite of micrometeorological sensors. We compare the power spectra of measured optical pulse timing jitter to predictions based on the measured micrometeorological data and standard turbulence theory. To further quantitatively compare the frequency comb data to the micrometeorological measurements, we extract and compare the refractive index structure parameter, Cn2, from both systems and find agreement to within a factor of 5 for wind speed >1 m/s, and further improvement is possible as wind speed increases. These results validate the use of conventional micrometeorological instruments in predicting optical timing jitter statistics over co-located laser beam paths.

SELECTION OF CITATIONS
SEARCH DETAIL
...