Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Neurol Clin Pract ; 13(4): e200166, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37251368

ABSTRACT

Background and Objectives: The global spread of the COVID-19 pandemic accelerated the vaccine development time line, regulatory approval, and widespread implementation in the population underscoring the importance of postauthorization/postlicensure vaccine safety surveillance. To monitor for vaccine-related adverse events, we prospectively identified patients hospitalized for prespecified neurologic conditions who received mRNA or adenovirus COVID-19 vaccines and assessed cases for potential risk factors and alternative etiologies of the adverse event. Methods: We identified prespecified neurologic conditions in hospitalized individuals within 6 weeks of receipt of a dose of any COVID-19 vaccination between December 11, 2020, and June 22, 2021 (Columbia University Irving Medical Center/New York Presbyterian Hospital, New York City, New York). Clinical data from electronic medical records in these vaccinated patients were reviewed for assessment of contributing risk factors and etiologies for these neurologic conditions by use of a published algorithm. Results: Among 3,830 individuals screened for COVID-19 vaccination status and neurologic conditions, 138 (3.6%) cases were included in this study (126 after mRNA and 6 after Janssen vaccines). The 4 most prevalent neurologic syndromes included ischemic stroke (52, 37.7%), encephalopathy (45, 32.6%), seizure (22, 15.9%), and intracranial hemorrhage (ICH) (13, 9.4%). All 138 cases (100%) had 1 or more risk factors and/or evidence for established causes. Metabolic derangement was the most common etiology for seizures (24, 53.3%) and encephalopathy (5, 22.7%) while hypertension was the most significant risk factor in ischemic stroke (45, 86.5%) and ICH cases (4, 30.8%). Discussion: All cases in this study were determined to have at least 1 risk factor and/or known etiology accounting for their neurologic syndromes. Our comprehensive clinical review of these cases supports the safety of mRNA COVID-19 vaccines.

2.
Semin Neurol ; 43(2): 297-311, 2023 04.
Article in English | MEDLINE | ID: mdl-37094803

ABSTRACT

The benefits of coronavirus disease 2019 (COVID-19) vaccination significantly outweigh its risks on a public health scale, and vaccination has been crucial in controlling the spread of SARS-CoV-2. Nonetheless, several reports of adverse events following vaccination have been published.To summarize reports to date and assess the extent and quality of evidence regarding possible serious adverse neurological events following COVID-19 vaccination, focusing on Food and Drug Administration (FDA)-approved vaccines in the United States (BNT162b2, mRNA-1273, and Ad26.COV2.S).A review of literature from five major electronic databases (PubMed, Medline, Embase, Cochrane Library, and Google Scholar) was conducted between December 1, 2020 and June 5, 2022. Articles included in the review were systematic reviews and meta-analysis, cohort studies, retrospective studies, case-control studies, case series, and reports. Editorials, letters, and animal studies were excluded, since these studies did not include quantitative data regarding adverse side effects of vaccination in human subjects.Of 149 total articles and 97 (65%) were case reports or case series. Three phase 3 trials initially conducted for BNT162b2, MRNA-1273, and Ad26.COV2.S were included in the analysis.The amount and quality of evidence for possible neurological adverse events in the context of FDA-approved COVID-19 vaccinations is overall low tier. The current body of evidence continues to suggest that COVID-19 vaccinations have a high neurological safety profile; however, the risks and benefits of vaccination must continue to be closely monitored.


Subject(s)
COVID-19 , Animals , Humans , 2019-nCoV Vaccine mRNA-1273 , Ad26COVS1 , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Retrospective Studies , SARS-CoV-2 , Vaccination/adverse effects
3.
Ther Adv Infect Dis ; 9: 20499361221102664, 2022.
Article in English | MEDLINE | ID: mdl-35719177

ABSTRACT

The COVID-19 pandemic has shed light on the challenges we face as a global society in preventing and containing emerging and re-emerging pathogens. Multiple intersecting factors, including environmental changes, host immunological factors, and pathogen dynamics, are intimately connected to the emergence and re-emergence of communicable diseases. There is a large and expanding list of communicable diseases that can cause neurological damage, either through direct or indirect routes. Novel pathogens of neurotropic potential have been identified through advanced diagnostic techniques, including metagenomic next-generation sequencing, but there are also known pathogens which have expanded their geographic distribution to infect non-immune individuals. Factors including population growth, climate change, the increase in animal and human interface, and an increase in international travel and trade are contributing to the expansion of emerging and re-emerging pathogens. Challenges exist around antimicrobial misuse giving rise to antimicrobial-resistant infectious neurotropic organisms and increased susceptibility to infection related to the expanded use of immunomodulatory treatments. In this article, we will review key concepts around emerging and re-emerging pathogens and discuss factors associated with neurotropism and neuroinvasion. We highlight several neurotropic pathogens of interest, including West Nile virus (WNV), Zika Virus, Japanese Encephalitis Virus (JEV), and Tick-Borne Encephalitis Virus (TBEV). We emphasize neuroinfectious diseases which impact the central nervous system (CNS) and focus on flaviviruses, a group of vector-borne pathogens that have expanded globally in recent years and have proven capable of widespread outbreak.

4.
Nanoscale ; 4(15): 4382-92, 2012 Aug 07.
Article in English | MEDLINE | ID: mdl-22740071

ABSTRACT

Phase change memory materials store information through their reversible transitions between crystalline and amorphous states. For typical metal chalcogenide compounds, their phase transition properties directly impact critical memory characteristics and the manipulation of these is a major focus in the field. Here, we discuss recent work that explores the tuning of such properties by scaling the materials to nanoscale dimensions, including fabrication and synthetic strategies used to produce nanoscale phase change memory materials. The trends that emerge are relevant to understanding how such memory technologies will function as they scale to ever smaller dimensions and also suggest new approaches to designing materials for phase change applications. Finally, the challenges and opportunities raised by integrating nanoscale phase change materials into switching devices are discussed.

5.
Nano Lett ; 11(3): 1147-52, 2011 Mar 09.
Article in English | MEDLINE | ID: mdl-21338071

ABSTRACT

The question of the nature and stability of polar ordering in nanoscale ferroelectrics is examined with colloidal nanocrystals of germanium telluride (GeTe). We provide atomic-scale evidence for room-temperature polar ordering in individual nanocrystals using aberration-corrected transmission electron microscopy and demonstrate a reversible, size-dependent polar-nonpolar phase transition of displacive character in nanocrystal ensembles. A substantial linear component of the distortion is observed, which is in contrast with theoretical reports predicting a toroidal state.

6.
Chem Commun (Camb) ; 47(1): 556-8, 2011 Jan 07.
Article in English | MEDLINE | ID: mdl-21103582

ABSTRACT

A general, efficient method is demonstrated for exchanging native oxyanionic ligands on inorganic nanocrystals with functional trimethylsilylated (TMS) chalcogenido ligands. In addition, newly synthesized TMS mixed chalcogenides leverage preferential reactivity of TMS-S bonds over TMS-O bonds, enabling efficient transfer of luminescent nanocrystals into aqueous media with retention of their optical properties.


Subject(s)
Chalcogens/chemistry , Nanostructures/chemistry , Oxygen/chemistry , Ligands , Molecular Structure , Surface Properties
7.
Nano Lett ; 7(11): 3504-7, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17900200

ABSTRACT

Soluble metal chalcogenide precursors are used to fabricate arrays of metal chalcogenide nanodots by spin-coating. Nanodots are formed after thermal decomposition of the precursors, which are collected in patterned nanowell arrays. These arrays are derived from block copolymer patterns and may consist of the polymer itself or result from etching to transfer the pattern to an inorganic substrate. Etching provides enhanced control over nanowell shape and the morphology of the resulting metal chalcogenide array.


Subject(s)
Metal Nanoparticles/chemistry , Nanoparticles/chemistry , Nanotechnology/methods , Polymers/chemistry , Quantum Dots , Antimony/chemistry , Germanium/chemistry , Metals/chemistry , Microscopy, Atomic Force , Microscopy, Electron, Transmission , Selenium/chemistry , Silicon Dioxide/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...