Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 105(21): 7382-6, 2008 May 27.
Article in English | MEDLINE | ID: mdl-18495922

ABSTRACT

Intriguing seismic observations have been made for the bottom 400 km of Earth's mantle (the D'' region) over the past few decades, yet the origin of these seismic structures has not been well understood. Recent theoretical calculations have predicted many unusual changes in physical properties across the postperovskite transition, perovskite (Pv) --> postperovskite (PPv), that may provide explanations for the seismic observations. Here, we report measurements of the crystal structure of (Mg(0.91)Fe(0.09))SiO(3)-PPv under quasi-hydrostatic conditions up to the pressure (P)-temperature (T) conditions expected for the core-mantle boundary (CMB). The measured crystal structure is in excellent agreement with the first-principles calculations. We found that bulk sound speed (V(Phi)) decreases by 2.4 +/- 1.4% across the PPv transition. Combined with the predicted shear-wave velocity (V(S)) increase, our measurements indicate that lateral variations in mineralogy between Pv and PPv may result in the anticorrelation between the V(Phi) and V(S) anomalies at the D'' region. Also, density increases by 1.6 +/- 0.4% and Grüneisen parameter decreases by 21 +/- 15% across the PPv transition, which will dynamically stabilize the PPv lenses observed in recent seismic studies.

2.
Rev Sci Instrum ; 78(6): 063907, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17614626

ABSTRACT

We report a first combination of diamond anvil cell radial x-ray diffraction with in situ laser heating. The laser-heating setup of ALS beamline 12.2.2 was modified to allow one-sided heating of a sample in a diamond anvil cell with an 80 W yttrium lithium fluoride laser while probing the sample with radial x-ray diffraction. The diamond anvil cell is placed with its compressional axis vertical, and perpendicular to the beam. The laser beam is focused onto the sample from the top while the sample is probed with hard x-rays through an x-ray transparent boron-epoxy gasket. The temperature response of preferred orientation of (Fe,Mg)O is probed as a test experiment. Recrystallization was observed above 1500 K, accompanied by a decrease in stress.


Subject(s)
Diamond , Heating/instrumentation , Lasers , Specimen Handling/instrumentation , Synchrotrons/instrumentation , X-Ray Diffraction/instrumentation , Equipment Design , Equipment Failure Analysis , Reproducibility of Results , Sensitivity and Specificity
3.
J Synchrotron Radiat ; 12(Pt 5): 650-8, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16120990

ABSTRACT

A new facility for high-pressure diffraction and spectroscopy using diamond anvil high-pressure cells has been built at the Advanced Light Source on beamline 12.2.2. This beamline benefits from the hard X-radiation generated by a 6 T superconducting bending magnet (superbend). Useful X-ray flux is available between 5 keV and 35 keV. The radiation is transferred from the superbend to the experimental enclosure by the brightness-preserving optics of the beamline. These optics are comprised of a plane parabola collimating mirror, followed by a Kohzu monochromator vessel with Si(111) crystals (E/DeltaE approximately equal 7000) and W/B4C multilayers (E/DeltaE approximately equal 100), and then a toroidal focusing mirror with variable focusing distance. The experimental enclosure contains an automated beam-positioning system, a set of slits, ion chambers, the sample positioning goniometry and area detector (CCD or image-plate detector). Future developments aim at the installation of a second endstation dedicated to in situ laser heating and a dedicated high-pressure single-crystal station, applying both monochromatic and polychromatic techniques.

SELECTION OF CITATIONS
SEARCH DETAIL
...