Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(8): 10897-10907, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38364212

ABSTRACT

The selective, rapid detection of low levels of hormones in drinking water and foodstuffs requires materials suitable for inexpensive sensing platforms. We report on core-shell Ag@C nanocables (NCs) decorated with carbon spherical shells (CSSs) and silver nanoparticles (AgNPs) by using a hydrothermal green approach. Sensors were fabricated with homogeneous, porous films on screen-printed electrodes, which comprised a 115 nm silver core covered by a 122 nm thick carbon layer and CSSs with 168 nm in diameter. NCs and CSSs were also decorated with 10-25 nm AgNPs. The NC/CSS/AgNP sensor was used to detect ethinylestradiol using square wave voltammetry in 0.1 M phosphate buffer (pH 7.0) over the 1.0-10.0 µM linear range with a detection limit of 0.76 µM. The sensor was then applied to detect ethinylestradiol in tap water samples and a contraceptive pill with recovery percentages between 93 and 101%. The high performance in terms of sensitivity and selectivity for hormones is attributed to the synergy between the carbon nanomaterials and AgNPs, which not only increased the sensor surface area and provided sites for electron exchange but also imparted an increased surface area.


Subject(s)
Carbon , Metal Nanoparticles , Silver , Ethinyl Estradiol , Water , Hormones , Electrodes , Electrochemical Techniques
2.
Biomater Adv ; 155: 213676, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37944446

ABSTRACT

The synergy between eco-friendly biopolymeric films and printed devices leads to the production of plant-wearable sensors for decentralized analysis of pesticides in precision agriculture and food safety. Herein, a simple method for fabrication of flexible, and sustainable sensors printed on cellulose acetate (CA) substrates has been demonstrated to detect carbendazim and paraquat in agricultural, water and food samples. The biodegradable CA substrates were made by casting method while the full electrochemical system of three electrodes was deposited by screen-printing technique (SPE) to produce plant-wearable sensors. Analytical performance was assessed by differential pulse (DPV) and square wave voltammetry (SWV) in a linear concentration range between 0.1 and 1.0 µM with detection limits of 54.9 and 19.8 nM for carbendazim and paraquat, respectively. The flexible and sustainable non-enzymatic plant-wearable sensor can detect carbendazim and paraquat on lettuce and tomato skins, and also water samples with no interference from other pesticides. The plant-wearable sensors had reproducible response being robust and stable against multiple flexions. Due to high sensitivity and selectivity, easy operation and rapid agrochemical detection, the plant-wearable sensors can be used to detect biomarkers in human biofluids and be used in on-site analysis of other hazardous chemical substances.


Subject(s)
Pesticides , Wearable Electronic Devices , Humans , Pesticides/analysis , Paraquat/analysis , Food Safety , Agriculture , Water/analysis
3.
Talanta ; 174: 652-659, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-28738637

ABSTRACT

We report the electrochemical detection of estriol using carbon black nanoballs (CNB) decorated with silver nanoparticles (AgNP) as electrode material. Homogeneous, porous films on glassy carbon electrodes (GCE) were obtained, with diameters of 20 - 25nm for CNB and 5 - 6nm for AgNP. CNB/AgNP electrodes had increased conductivity and electroactive area in comparison with bare GCE and GCE/CNB, according to cyclic voltammetry and electrochemical impedance spectroscopy. The oxidation potential peak was also down shifted by 93mV, compared to the bare GC electrode. Differential pulse voltammetry data were obtained in 0.1molL-1 PBS (pH 7.0) to detect estriol without the purification step, in the linear range between 0.2 and 3.0µmolL-1 with detection and quantification limits of 0.16 and 0.5µmolL-1 (0.04 and 0.16mgL-1), respectively. The sensor was used to detect estriol in a creek water sample with the same performance as in the official methodology based on high performance liquid chromatography.


Subject(s)
Chemistry Techniques, Analytical/instrumentation , Estriol/analysis , Hormones/analysis , Limit of Detection , Silver/chemistry , Soot/chemistry , Water/chemistry , Electrochemistry , Endocrine Disruptors/analysis , Oxidation-Reduction , Water Pollutants, Chemical/analysis
4.
Anal Chim Acta ; 926: 88-98, 2016 Jul 05.
Article in English | MEDLINE | ID: mdl-27216397

ABSTRACT

We report on the synthesis, characterization and applications of a Printex L6 carbon-silver hybrid nanomaterial (PC-Ag), which was obtained using a polyol method. In addition, we also highlight the use of Printex L6 nano-carbon as a much cheaper alternative to the use of carbon nanotubes and graphene. The silver nanoparticles (AgNP) were prepared directly on the surface of the Printex 6L carbon "nanocarbon" material using ethylene glycol as the reducing agent. The hybrid nanomaterial was characterized by High-angle annular dark-field transmission electron microscopy (HAADF-TEM), energy-dispersive X-ray spectroscopy (EDX), selected area electron diffraction (SAED), Raman spectroscopy and cyclic voltammetry. Optimized electrocatalytic activity on glassy carbon electrode was reached for the architecture GC/PC-Ag, the silver nanoparticles with size ranging between 1 and 2 nm were well-distributed throughout the hybrid material. The synergy between PC nano-carbons and AgNPs was verified by detection of gallic acid (GA) at a low applied potential (0.091 V vs. Ag/AgCl). GA detection was performed in a concentration range between 5.0 × 10(-7) and 8.5 × 10(-6) mol L(-1), with a detection limit of 6.63 × 10(-8) mol L(-1) (66.3 nmol L(-1)), which is considerably lower than similar devices. The approach for fabricating the reproducible GC/PC-Ag electrodes is entirely generic and may be explored for other types of (bio)sensors and devices.


Subject(s)
Antioxidants/pharmacology , Carbon/chemistry , Nanoparticles/chemistry , Silver/chemistry , Chromatography, Gas , Microscopy, Electron, Transmission , Spectrum Analysis/methods
5.
Chemosphere ; 66(11): 2152-8, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17126378

ABSTRACT

This work presents an electrochemical investigation of the benzene oxidation process in aqueous solution on boron-doped diamond (BDD) electrodes. Additionally, in order to determine the main products generated during the oxidation process, electrolysis and high performance liquid chromatography experiments were carried out. The complete degradation of this compound was performed aiming to a further application in waste water treatment. The cyclic voltammetry studies indicate that benzene is irreversibly oxidized in acid medium (H2SO4 0.5 M) on the BDD electrode surface at 2.0 V versus Ag/AgCl in a diffusion controlled process. During the cycling, other products are generated, and a pair of peaks was observed that can be associated with the oxi-reduction of anyone of the following species: hydroquinone, benzoquinone, resorcinol or catechol. The electrolysis experiments were carried out at 2.4 and 2.5 V on the BDD electrode surface in a solution containing 1x10(-2) M of benzene (below the saturation concentration in aqueous solution), for 3 and 5 h, respectively. The main products measured were: hydroquinone, resorcinol, p-benzoquinone, catechol and phenol. The complete electrochemical benzene degradation was performed in the electrolysis experiments using a rotating BDD disc electrode (2.5 V for 5 h) and the main products detected were all measured at concentrations lower than 10(-5) M in this condition. The boron-doped diamond electrode had proved to be a valuable tool for the electrochemical degradation of the benzene, a very stable chemical compound.


Subject(s)
Benzene/chemistry , Boron/chemistry , Diamond/chemistry , Electrolysis/methods , Water Pollutants, Chemical/chemistry , Water Pollution/prevention & control , Chromatography, High Pressure Liquid , Electrodes , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL