Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Autophagy ; : 1-16, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38873940

ABSTRACT

Mesenchymal stem cells (MSCs) are used in cell therapy; nonetheless, their application is limited by their poor survival after transplantation in a proinflammatory microenvironment. Macroautophagy/autophagy activation in MSCs constitutes a stress adaptation pathway, promoting cellular homeostasis. Our proteomics data indicate that RUBCNL/PACER (RUN and cysteine rich domain containing beclin 1 interacting protein like), a positive regulator of autophagy, is also involved in cell death. Hence, we screened MSC survival upon various cell death stimuli under loss or gain of function of RUBCNL. MSCs were protected from TNF (tumor necrosis factor)-induced regulated cell death when RUBCNL was expressed. TNF promotes inflammation by inducing RIPK1 kinase-dependent apoptosis or necroptosis. We determine that MSCs succumb to RIPK1 kinase-dependent apoptosis upon TNF sensing and necroptosis when caspases are inactivated. We show that RUBCNL is a negative regulator of both RIPK1-dependent apoptosis and necroptosis. Furthermore, RUBCNL mutants that lose the ability to regulate autophagy, retain their function in negatively regulating cell death. We also found that RUBCNL forms a complex with RIPK1, which disassembles in response to TNF. In line with this finding, RUBCNL expression limits assembly of RIPK1-TNFRSF1A/TNFR1 complex I, suggesting that complex formation between RUBCNL and RIPK1 represses TNF signaling. These results provide new insights into the crosstalk between the RIPK1-mediated cell death and autophagy machineries and suggest that RUBCNL, due to its functional duality in autophagy and apoptosis/necroptosis, could be targeted to improve the therapeutic efficacy of MSCs. Abbreviations: BAF: bafilomycin A1; CASP3: caspase 3; Caspases: cysteine-aspartic proteases; cCASP3: cleaved CASP3; CQ: chloroquine; CHX: cycloheximide; cPARP: cleaved poly (ADP-ribose) polymerase; DEPs: differential expressed proteins; ETO: etoposide; MEF: mouse embryonic fibroblast; MLKL: mixed lineage kinase domain-like; MSC: mesenchymal stem cell; MTORC1: mechanistic target of rapamycin kinase complex 1; Nec1s: necrostatin 1s; NFKB/NF-kB: nuclear factor of kappa light polypeptide gene enhancer in B cells; PLA: proximity ligation assay; RCD: regulated cell death; RIPK1: receptor (TNFRSF)-interacting serine-threonine kinase 1; RIPK3: receptor-interacting serine-threonine kinase 3; RUBCNL/PACER: RUN and cysteine rich domain containing beclin 1 interacting protein like; siCtrl: small interfering RNA nonsense; siRNA: small interfering RNA; TdT: terminal deoxynucleotidyl transferase; Tm: tunicamycin; TNF: tumor necrosis factor; TNFRSF1A/TNFR1: tumor necrosis factor receptor superfamily, member 1a.

2.
Sci Rep ; 13(1): 17137, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37816871

ABSTRACT

Alzheimer's disease (AD) is the most common neurodegenerative disorder, characterized by protein accumulation in the brain as a main neuropathological hallmark. Among them, Aß42 peptides tend to aggregate and create oligomers and plaques. Macroautophagy, a form of autophagy characterized by a double-membrane vesicle, plays a crucial role in maintaining neuronal homeostasis by degrading protein aggregates and dysfunctional organelles as a quality control process. Recently, DEF8, a relatively uncharacterized protein, has been proposed as a participant in vesicular traffic and autophagy pathways. We have reported increased DEF8 levels in lymphocytes from mild cognitive impairment (MCI) and early-stage AD patients and a neuronal profile in a murine transgenic AD model. Here, we analyzed DEF8 localization and levels in the postmortem frontal cortex of AD patients, finding increased levels compared to healthy controls. To evaluate the potential function of DEF8 in the nervous system, we performed an in silico assessment of its expression and network profiles, followed by an in vivo evaluation of a neuronal Def8 deficient model using a Drosophila melanogaster model of AD based on Aß42 expression. Our findings show that DEF8 is an essential protein for maintaining cellular homeostasis in the nervous system, and it is upregulated under stress conditions generated by Aß42 aggregation. This study suggests DEF8 as a novel actor in the physiopathology of AD, and its exploration may lead to new treatment avenues.


Subject(s)
Alzheimer Disease , Animals , Humans , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Autophagy/genetics , Brain/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Peptide Fragments/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...