Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Gut Microbes ; 16(1): 2363012, 2024.
Article in English | MEDLINE | ID: mdl-38860458

ABSTRACT

The intestinal microbiota is an important environmental factor implicated in CRC development. Intriguingly, modulation of DNA methylation by gut microbiota has been reported in preclinical models, although the relationship between tumor-infiltrating bacteria and CIMP status is currently unexplored. In this study, we investigated tumor-associated bacteria in 203 CRC tumor cases and validated the findings using The Cancer Genome Atlas datasets. We assessed the abundance of Bacteroides fragilis, Escherichia coli, Fusobacterium nucleatum, and Klebsiella pneumoniae through qPCR analysis and observed enrichment of all four bacterial species in CRC samples. Notably, except for E. coli, all exhibited significant enrichment in cases of CIMP. This enrichment was primarily driven by a subset of cases distinguished by high levels of these bacteria, which we labeled as "Superhigh". The bacterial Superhigh status showed a significant association with CIMP (odds ratio 3.1, p-value = 0.013) and with MLH1 methylation (odds ratio 4.2, p-value = 0.0025). In TCGA CRC cases (393 tumor and 45 adj. normal), bacterial taxa information was extracted from non-human whole exome sequencing reads, and the bacterial Superhigh status was similarly associated with CIMP (odds ratio 2.9, p < 0.001) and MLH1 methylation (odds ratio 3.5, p < 0.001). Finally, 16S ribosomal RNA gene sequencing revealed high enrichment of Bergeyella spp. C. concisus, and F. canifelinum in CIMP-Positive tumor cases. Our findings highlight that specific bacterial taxa may influence DNA methylation, particularly in CpG islands, and contribute to the development and progression of CIMP in colorectal cancer.


Subject(s)
Bacteria , Colorectal Neoplasms , CpG Islands , DNA Methylation , Gastrointestinal Microbiome , Humans , Colorectal Neoplasms/microbiology , Colorectal Neoplasms/genetics , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Female , Male , Middle Aged , Bacteroides fragilis/genetics , Bacteroides fragilis/isolation & purification , Aged , Phenotype
2.
Front Bioinform ; 4: 1351620, 2024.
Article in English | MEDLINE | ID: mdl-38533129

ABSTRACT

Long-read sequencing technologies offer new opportunities to generate high-confidence phased whole-genome sequencing data for robust pharmacogenetic annotation. Here, we describe a new user-friendly R package, ursaPGx, designed to accept multi-sample phased whole-genome sequencing data VCF input files and output star allele annotations for pharmacogenes annotated in PharmVar.

3.
Blood ; 143(2): 166-177, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-37871574

ABSTRACT

ABSTRACT: Persisting alloreactive donor T cells in target tissues are a determinant of graft-versus-host disease (GVHD), but the transcriptional regulators that control the persistence and function of tissue-infiltrating T cells remain elusive. We demonstrate here that Id3, a DNA-binding inhibitor, is critical for sustaining T-cell responses in GVHD target tissues in mice, including the liver and intestine. Id3 loss results in aberrantly expressed PD-1 in polyfunctional T helper 1 (Th1) cells, decreased tissue-infiltrating PD-1+ polyfunctional Th1 cell numbers, impaired maintenance of liver TCF-1+ progenitor-like T cells, and inhibition of GVHD. PD-1 blockade restores the capacity of Id3-ablated donor T cells to mediate GVHD. Single-cell RNA-sequencing analysis revealed that Id3 loss leads to significantly decreased CD28- and PI3K/AKT-signaling activity in tissue-infiltrating polyfunctional Th1 cells, an indicator of active PD-1/PD-L1 effects. Id3 is also required for protecting CD8+ T cells from the PD-1 pathway-mediated suppression during GVHD. Genome-wide RNA-sequencing analysis reveals that Id3 represses transcription factors (e.g., Nfatc2, Fos, Jun, Ets1, and Prdm1) that are critical for PD-1 transcription, exuberant effector differentiation, and interferon responses and dysfunction of activated T cells. Id3 achieves these effects by restraining the chromatin accessibility for these transcription factors. Id3 ablation in donor T cells preserved their graft vs tumor effects in mice undergoing allogeneic hematopoietic stem cell transplantation. Furthermore, CRISPR/Cas9 knockout of ID3 in human CD19-directed chimeric antigen receptor T cells retained their antitumor activity in NOD/SCID/IL2Rg-/- mice early after administration. These findings identify that ID3 is an important target to reduce GVHD, and the gene-editing program of ID3 may have broad implications in T-cell-based immunotherapy.


Subject(s)
Graft vs Host Disease , Programmed Cell Death 1 Receptor , Mice , Animals , Humans , Programmed Cell Death 1 Receptor/genetics , Phosphatidylinositol 3-Kinases , Mice, SCID , Mice, Inbred NOD , Graft vs Host Disease/prevention & control , Transcription Factors , RNA
5.
Genome Biol ; 24(1): 27, 2023 02 16.
Article in English | MEDLINE | ID: mdl-36797759

ABSTRACT

BACKGROUND: Epigenetic marks are encoded by DNA methylation and accumulate errors as organisms age. This drift correlates with lifespan, but the biology of how this occurs is still unexplained. We analyze DNA methylation with age in mouse intestinal stem cells and compare them to nonstem cells. RESULTS: Age-related changes in DNA methylation are identical in stem and nonstem cells, affect most prominently CpG islands and correlate weakly with gene expression. Age-related DNA methylation entropy, measured by the Jensen-Shannon Distribution, affects up to 25% of the detectable CpG sites and is a better measure of aging than individual CpG methylation. We analyze this entropy as a function of age in seven other tissues (heart, kidney, skeletal muscle, lung, liver, spleen, and blood) and it correlates strikingly with tissue-specific stem cell division rates. Thus, DNA methylation drift and increased entropy with age are primarily caused by and are sensors for, stem cell replication in adult tissues. CONCLUSIONS: These data have implications for the mechanisms of tissue-specific functional declines with aging and for the development of DNA-methylation-based biological clocks.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Animals , Mice , Entropy , Aging/genetics , Stem Cells , CpG Islands
6.
Epigenetics ; 18(1): 2160568, 2023 12.
Article in English | MEDLINE | ID: mdl-36572998

ABSTRACT

DNA methylation is an epigenetic process altered in cancer and ageing. Age-related methylation drift can be used to estimate lifespan and can be influenced by extrinsic factors such as diet. Here, we report that non-pathogenic microbiota accelerate age-related methylation drift in the colon when compared with germ-free mice. DNA methylation analyses showed that microbiota and IL10KO were associated with changes in 5% and 4.1% of CpG sites, while mice with both factors had 18% alterations. Microbiota, IL10KO, and their combination altered 0.4%, 0.4%, and 4% of CpG island methylation, respectively. These are comparable to what is seen in colon cancer. Ageing changes were accelerated in the IL10KO mice with microbiota, and the affected genes were more likely to be altered in colon cancer. Thus, the microbiota affect DNA methylation of the colon in patterns reminiscent of what is observed in ageing and colorectal cancer.


Subject(s)
Colonic Neoplasms , Colorectal Neoplasms , Microbiota , Animals , Mice , CpG Islands , DNA Methylation , Colorectal Neoplasms/genetics , Colonic Neoplasms/genetics , Mucous Membrane/pathology
7.
Cancers (Basel) ; 14(14)2022 Jul 08.
Article in English | MEDLINE | ID: mdl-35884401

ABSTRACT

Aberrant transcription in cancer cells involves the silencing of tumor suppressor genes (TSGs) and activation of oncogenes. Transcriptomic changes are associated with epigenomic alterations such as DNA-hypermethylation, histone deacetylation, and chromatin condensation in promoter regions of silenced TSGs. To discover novel drugs that trigger TSG reactivation in cancer cells, we used a GFP-reporter system whose expression is silenced by promoter DNA hypermethylation and histone deacetylation. After screening a natural product drug library, we identified that toyocamycin, an adenosine-analog, induces potent GFP reactivation and loss of clonogenicity in human colon cancer cells. Connectivity-mapping analysis revealed that toyocamycin produces a pharmacological signature mimicking cyclin-dependent kinase (CDK) inhibitors. RNA-sequencing revealed that the toyocamycin transcriptomic signature resembles that of a specific CDK9 inhibitor (HH1). Specific inhibition of RNA Pol II phosphorylation level and kinase assays confirmed that toyocamycin specifically inhibits CDK9 (IC50 = 79 nM) with a greater efficacy than other CDKs (IC50 values between 0.67 and 15 µM). Molecular docking showed that toyocamycin efficiently binds the CDK9 catalytic site in a conformation that differs from other CDKs, explained by the binding contribution of specific amino acids within the catalytic pocket and protein backbone. Altogether, we demonstrated that toyocamycin exhibits specific CDK9 inhibition in cancer cells, highlighting its potential for cancer chemotherapy.

8.
Front Microbiol ; 12: 779016, 2021.
Article in English | MEDLINE | ID: mdl-34992587

ABSTRACT

As many cities around the world face the prospect of replacing aging drinking water distribution systems (DWDS), water utilities must make careful decisions on new pipe material (e.g., cement-lined or PVC) for these systems. These decisions are informed by cost, physical integrity, and impact on microbiological and physicochemical water quality. Indeed, pipe material can impact the development of biofilm in DWDS that can harbor pathogens and impact drinking water quality. Annular reactors (ARs) with cast iron and cement coupons fed with chloraminated water from a municipal DWDS were used to investigate the impact of pipe material on biofilm development and composition over 16 months. The ARs were plumbed as closely as possible to the water main in the basement of an academic building to simulate distribution system conditions. Biofilm communities on coupons were characterized using 16S rRNA sequencing. In the cast iron reactors, ß-proteobacteria, Actinobacteria, and α-proteobacteria were similarly relatively abundant (24.1, 22.5, and 22.4%, respectively) while in the cement reactors, α-proteobacteria and Actinobacteria were more relatively abundant (36.3 and 35.2%, respectively) compared to ß-proteobacteria (12.8%). Mean alpha diversity (estimated with Shannon H and Faith's Phylogenetic Difference indices) was greater in cast iron reactors (Shannon: 5.00 ± 0.41; Faith's PD: 15.40 ± 2.88) than in cement reactors (Shannon: 4.16 ± 0.78; Faith's PD: 13.00 ± 2.01). PCoA of Bray-Curtis dissimilarities indicated that communities in cast iron ARs, cement ARs, bulk distribution system water, and distribution system pipe biofilm were distinct. The mean relative abundance of Mycobacterium spp. was greater in the cement reactors (34.8 ± 18.6%) than in the cast iron reactors (21.7 ± 11.9%). In contrast, the mean relative abundance of Legionella spp. trended higher in biofilm from cast iron reactors (0.5 ± 0.7%) than biofilm in cement reactors (0.01 ± 0.01%). These results suggest that pipe material is associated with differences in the diversity, bacterial composition, and opportunistic pathogen prevalence in biofilm of DWDS.

9.
Clin Transl Med ; 10(1): 258-274, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32508014

ABSTRACT

BACKGROUND: Effective clinical management of airway clot and fibrinous cast formation of severe inhalational smoke-induced acute lung injury (ISALI) is lacking. Aerosolized delivery of tissue plasminogen activator (tPA) is confounded by airway bleeding; single-chain urokinase plasminogen activator (scuPA) moderated this adverse effect and supported transient improvement in gas exchange and lung mechanics. However, neither aerosolized plasminogen activator (PA) yielded durable improvements in physiologic responses or reduction in cast burden. Here, we hypothesized that perfluorochemical (PFC) liquids would facilitate PA distribution and sustain improvements in physiologic outcomes in ISALI. METHODS: Spontaneously breathing adult sheep (n = 36) received anesthesia and analgesia and were instrumented, exposed to cotton smoke inhalation, and supported by mechanical ventilation for 48 h. Groups (n = 6/group) were studied without supplemental treatment, or, starting 4 h post injury, they received intratracheal low volume (8 mL) PFC liquid alone or a dose range of tPA/PFC or scuPA/PFC suspensions (4 or 8 mg in 8 mL PFC) every 8 h. Outcomes were evaluated by sequential measurements of cardiopulmonary parameters, lung histomorphology, and biochemical analyses of bronchoalveolar lavage fluid. RESULTS: Dose-response and PA-type comparisons of outcomes demonstrated sustained superiority with low-volume PFC suspensions of scuPA over tPA or PFC alone, favoring the highest dose of scuPA/PFC suspension over lower doses, without airway bleeding. CONCLUSIONS: We propose that this improved profile over previously reported aerosolized delivery is likely related to improved dose distribution. Sustained salutary responses to scuPA/PFC suspension delivery in this translational model are encouraging and support the possibility that the observed outcomes could be of clinical importance.

10.
World Neurosurg ; 121: e481-e492, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30267945

ABSTRACT

OBJECTIVE: Subarachnoid hemorrhage (SAH) frequently results in severe morbidity, even mortality. Hypothermia is known to have a neuroprotective effect in ischemic injuries. The aim of this study was to determine whether nasopharyngeal (NP) perfluorochemical (PFC) cooling could be used in a rat model of SAH model for neuroprotection. METHODS: SAH was induced in 16 male Sprague-Dawley rats by cisterna magna injection of 0.3 mL autologous blood. Vital signs, temperatures, cerebral blood flow (CBF), and brain histology were assessed. Brain cooling was performed on the treatment group using the NP-PFC method starting from 20 minutes after SAH. RESULTS: No SAH-related deaths were observed in either group. SAH caused an immediate decrease in mean arterial pressure (17.0% ± 4.90% below baseline values). SAH induction caused a significant and rapid decrease in CBF from baseline (approximately -65%, ranging from -32% to -85%) in both hemispheres. In the left hemisphere, cooling facilitated the return of CBF to baseline values within 20 minutes of treatment with further increase in CBF that stabilized by the 2 hours after injury time point. Quantitative immunohistochemistry showed that there were significantly more NeuN-positive cells in the cortex and significantly fewer IBA-1-positive microglia and glial fibrillary acidic protein-positive astrocytes cells in both cortex and hippocampus in the animals that received NP-PFC cooling compared with no treatment, reflecting preserved neuronal integrity and reduced inflammation. CONCLUSIONS: The data from this study indicate that local hypothermia by NP-PFC cooling supports return of CBF and neuronal integrity and suppresses the inflammatory response in SAH, suggestive of a promising neuroprotective approach in management of SAH.


Subject(s)
Fluorocarbons/therapeutic use , Nasopharynx/drug effects , Nasopharynx/physiology , Neuroprotective Agents/therapeutic use , Subarachnoid Hemorrhage/therapy , Animals , Blood Pressure/physiology , Brain/diagnostic imaging , Calcium-Binding Proteins/metabolism , Cerebrovascular Circulation/physiology , Disease Models, Animal , Glial Fibrillary Acidic Protein/metabolism , Kaplan-Meier Estimate , Male , Microfilament Proteins/metabolism , Phosphopyruvate Hydratase/metabolism , Rats , Rats, Sprague-Dawley , Subarachnoid Hemorrhage/diagnostic imaging , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...