Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Immunol ; 264: 110267, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38825071

ABSTRACT

Long-COVID (LC) is characterised by persistent symptoms for at least 3 months after acute infection. A dysregulation of the immune system and a persistent hyperinflammatory state may cause LC. LC patients present differences in activation and exhaustion states of innate and adaptive compartments. Different T CD4+ cell subsets can be identified by differential expression of chemokine receptors (CCR). However, changes in T cells with expression of CCRs such as CCR6 and CXCR3 and their relationship with CD8+ T cells remains unexplored in LC. Here, we performed unsupervised analysis and found CCR6+ CD4+ subpopulations enriched in COVID-19 convalescent individuals upon activation with SARS-CoV-2 peptides. SARS-CoV-2 specific CCR6+ CD4+ are decreased in LC patients, whereas CXCR3+ CCR6- and CCR4+ CCR6- CD4+ T cells are increased. LC patients showed lower IFN-γ-secreting CD8+ T cells after stimulation with SARS-CoV-2 Spike protein. This work underscores the role of CCR6 in the pathophysiology of LC.


Subject(s)
CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , COVID-19 , Interferon-gamma , Receptors, CCR6 , Receptors, CXCR3 , SARS-CoV-2 , Humans , Receptors, CCR6/immunology , Receptors, CCR6/metabolism , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , CD4-Positive T-Lymphocytes/immunology , Receptors, CXCR3/immunology , Receptors, CXCR3/metabolism , SARS-CoV-2/immunology , Interferon-gamma/immunology , Interferon-gamma/metabolism , Male , Female , Middle Aged , Aged , Adult
2.
Front Immunol ; 14: 1197289, 2023.
Article in English | MEDLINE | ID: mdl-37520527

ABSTRACT

The organization of the mitochondrial network is relevant for the metabolic fate of T cells and their ability to respond to TCR stimulation. This arrangement depends on cytoskeleton dynamics in response to TCR and CD28 activation, which allows the polarization of the mitochondria through their change in shape, and their movement along the microtubules towards the immune synapse. This work focus on the role of End-binding protein 1 (EB1), a protein that regulates tubulin polymerization and has been previously identified as a regulator of intracellular transport of CD3-enriched vesicles. EB1-interferred cells showed defective intracellular organization and metabolic strength in activated T cells, pointing to a relevant connection of the cytoskeleton and metabolism in response to TCR stimulation, which leads to increased AICD. By unifying the organization of the tubulin cytoskeleton and mitochondria during CD4+ T cell activation, this work highlights the importance of this connection for critical cell asymmetry together with metabolic functions such as glycolysis, mitochondria respiration, and cell viability.


Subject(s)
CD4-Positive T-Lymphocytes , Microtubule-Associated Proteins , Mitochondria , Jurkat Cells , Humans , Microtubule-Associated Proteins/metabolism , CD4-Positive T-Lymphocytes/metabolism , Mitochondria/metabolism , Tubulin/metabolism , Cytoskeleton/metabolism , Receptors, Antigen, T-Cell/metabolism , CD28 Antigens/metabolism , Membrane Potential, Mitochondrial , Immunological Synapses
SELECTION OF CITATIONS
SEARCH DETAIL
...