Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Language
Publication year range
1.
Cell Mol Neurobiol ; 37(1): 53-63, 2017 Jan.
Article in English | MEDLINE | ID: mdl-26879755

ABSTRACT

Thyroid hormones have an influence on the functioning of the central nervous system. Furthermore, the cholinergic and purinergic systems also are extensively involved in brain function. In this context, quercetin is a polyphenol with antioxidant and neuroprotective properties. This study investigated the effects of (MMI)-induced hypothyroidism on the NTPDase, 5'-nucleotidase, adenosine deaminase (ADA), and acetylcholinesterase (AChE) activities in synaptosomes of rats and whether the quercetin can prevent it. MMI at a concentration of 20 mg/100 mL was administered for 90 days in the drinking water. The animals were divided into six groups: control/water (CT/W), control/quercetin 10 mg/kg, control/quercetin 25 mg/kg, methimazole/water (MMI/W), methimazole/quercetin 10 mg/kg (MMI/Q10), and methimazole/quercetin 25 mg/kg (MMI/Q25). On the 30th day, hormonal dosing was performed to confirm hypothyroidism, and the animals were subsequently treated with 10 or 25 mg/kg quercetin for 60 days. NTPDase activity was not altered in the MMI/W group. However, treatment with quercetin decreased ATP and ADP hydrolysis in the MMI/Q10 and MMI/Q25 groups. 5'-nucleotidase activity increased in the MMI/W group, but treatments with 10 or 25 mg/kg quercetin decreased 5'-nucleotidase activity. ADA activity decreased in the CT/25 and MMI/Q25 groups. Furthermore, AChE activity was reduced in all groups with hypothyroidism. In vitro tests also demonstrated that quercetin per se decreased NTPDase, 5'-nucleotidase, and AChE activities. This study demonstrated changes in the 5'-nucleotidase and AChE activities indicating that purinergic and cholinergic neurotransmission are altered in this condition. In addition, quercetin can alter these parameters and may be a promising natural compound with important neuroprotective actions in hypothyroidism.


Subject(s)
5'-Nucleotidase/metabolism , Acetylcholinesterase/metabolism , Hypothyroidism/enzymology , Nucleoside-Triphosphatase/metabolism , Quercetin/therapeutic use , Synaptosomes/enzymology , Animals , Enzyme Activation/drug effects , Enzyme Activation/physiology , Hypothyroidism/drug therapy , Male , Polyphenols/pharmacology , Polyphenols/therapeutic use , Quercetin/pharmacology , Rats , Rats, Wistar , Synaptosomes/drug effects
2.
Ciênc. rural ; 46(2): 279-285, fev. 2016. tab, graf
Article in English | LILACS | ID: lil-767663

ABSTRACT

ABSTRACT: The mineral nutritional homeostasis in response to different concentrations of Hg (0, 25 and 50μM) was evaluated in Pfaffia glomerata plant. The exposure to the highest level of Hg (50µM) caused a decreasing in shoot and root fresh weights of 15.5% and 20%, respectively. Both shoot and root Hg concentrations increased linearly with increasing external Hg concentrations. Ca concentration decreased in shoot only at 50µM Hg, whereas shoot K and Mg concentrations decreased at both 25 and 50µM Hg, when compared to the control. A significant decrease in Cu, Zn, Fe and Mn concentrations in plants exposed to Hg was observed, but most Zn, Mn, and Cu in the roots. On the other hand, P concentration increased in both root and shoot of plants exposed at 25 and 50µM Hg, whereas Na concentration increased only in the root at 25 and 50µM Hg exposure. In general, tissue nutrient concentrations in P. glomerata plantlets exposed to Hg were significantly decreased, which indicates that the Hg may cause alteration on the mineral nutritional homeostasis of this species.


RESUMO: A homeostase nutricional mineral em resposta a diferentes concentrações de Hg (0, 25 e 50μM) foram avaliadas em plantas de Pfaffia glomerata. A exposição ao mais alto nível de Hg (50µM) causou um decréscimo de 15,5% e 20%, respectivamente, na matéria fresca da parte aérea e raízes. As concentrações de Hg na parte aérea e raízes aumentaram linearmente com o aumento das concentrações de Hg. A concentração de Ca decresceu na parte aérea somente em 50µM Hg, enquanto as concentrações de K e Mg na parte aérea decresceram tanto em 25 como em 50µM Hg, quando comparado ao controle. Observou-se um significativo decréscimo nas concentrações de Cu, Zn, Fe e Mn nas plantas expostas ao Hg, mas principalmente Zn, Mn e Cu nas raízes. Por outro lado, a concentração de P aumentou em raízes e parte aérea de plantas expostas a 25 e 50µM Hg, enquanto a concentração de Na aumentou somente nas raízes em 25 e 50µM Hg. No geral, as concentrações de nutrientes nos tecidos de P. glomerata expostas ao Hg foram significativamente diminuídas, o que indica que o Hg pode causar alterações na homeostase nutricional mineral dessa espécie.

3.
Mol Cell Biochem ; 405(1-2): 11-21, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25893731

ABSTRACT

This study was designed to assess the potential effect of vitamin D3 (VD3) in avoiding atherothrombosis by modulation of lipid metabolism and platelet activation in type 1 diabetic rats. Male wistar rats were divided into eight groups (n = 5-10): Control/Saline (Sal); Control/Metformin 500 mg/kg (Metf); Control/Vitamin D3 90 µg/kg (VD3); Control/Metformin 500 mg/kg + VD3 90 µg/kg (Metf + VD3); Diabetic/Saline (Sal); Diabetic/Metformin 500 mg/kg (Metf); Diabetic/Vitamin D3 90 µg/kg (VD3); Diabetic/Metformin 500 mg/kg + VD3 90 µg/kg (Metf + VD3). Treatments were administered during 30 days after diabetes induction with streptozotocin (STZ). After 31 days, the rats were euthanized and blood was collected and separated into serum and platelets, both used for lipid profile and ectonucleotidase activity assays, respectively. Ectonucleoside triphosphate phosphohydrolase (E-NTPDase), ectonucleotide pyrophosphatase/phosphodiesterase (E-NPP), and 5'-nucleotidase and adenosine deaminase (E-ADA) were significantly higher in the Diabetic than in Control group. Treatment with Metf and/or VD3 prevented the increase in NTPDase and E-NPP activities in diabetic rats. Only Metf + VD3 significantly prevented the increase in 5'-nucleotidase. VD3 alone, but not Metf, prevented the increase in ADA activity when compared to saline-treated diabetic rats. Treatment of rats with VD3, Metf, and Metf + VD3 was also effective in the prevention of lipid metabolism disorder in diabetic and was able to ameliorate lipid metabolism in non-diabetic rats. These results provide evidence for the potential of Metf and VD3 in the treatment of platelet dysfunction and lipid metabolism impairment in T1D, which may be important in the control and prevention of atherothrombosis in diabetes.


Subject(s)
5'-Nucleotidase/metabolism , Cholecalciferol/pharmacology , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/metabolism , Lipids/blood , Adenosine Deaminase/metabolism , Adenosine Triphosphatases/metabolism , Animals , Blood Platelets/drug effects , Blood Platelets/metabolism , Lipid Metabolism/drug effects , Male , Metformin/pharmacology , Phosphoric Diester Hydrolases/metabolism , Pyrophosphatases/metabolism , Rats , Rats, Wistar , Streptozocin/pharmacology
4.
Cell Biochem Funct ; 32(6): 502-10, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24947461

ABSTRACT

Diabetes is associated with long-term complications in the brain and reduced cognitive ability. Vitamin D3 (VD3 ) appears to be involved in the amelioration of hyperglycaemia in streptozotocin (STZ)-induced diabetic rats. Our aim was to analyse the potential of VD3 in avoiding brain damage through evaluation of acetylcholinesterase (AChE), Na(+) K(+) -adenosine triphosphatase (ATPase) and delta aminolevulinate dehydratase (δ-ALA-D) activities and thiobarbituric acid reactive substance (TBARS) levels from cerebral cortex, as well as memory in STZ-induced diabetic rats. Animals were divided into eight groups (n = 5): control/saline, control/metformin (Metf), control/VD3 , control/Metf + VD3 , diabetic/saline, diabetic/Metf, diabetic/VD3 and diabetic/Metf + VD3 . Thirty days after treatment, animals were submitted to contextual fear-conditioning and open-field behavioural tests, after which they were sacrificed and the cerebral cortex was dissected. Our results demonstrate a significant memory deficit, an increase in AChE activity and TBARS levels and a decrease in δ-ALA-D and Na(+) K(+) -ATPase activities in diabetic rats when compared with the controls. Treatment of diabetic rats with Metf and VD3 prevented the increase in AChE activity when compared with the diabetic/saline group. In treated diabetic rats, the decrease in Na(+) K(+) -ATPase was reverted when compared with non-treated rats, but the increase in δ-ALA-D activity was not. VD3 prevented diabetes-induced TBARS level and improved memory. Our results show that VD3 can avoid cognitive deficit through prevention of changes in important enzymes such as Na(+) K(+) -ATPase and AChE in cerebral cortex in type 1 diabetic rats.


Subject(s)
Cholecalciferol/pharmacology , Diabetes Mellitus, Type 1/drug therapy , Vitamins/pharmacology , Acetylcholinesterase/metabolism , Animals , Blood Glucose/drug effects , Body Weight/drug effects , Cerebral Cortex/drug effects , Cholecalciferol/therapeutic use , Diabetes Mellitus, Type 1/chemically induced , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/psychology , Eating/drug effects , Fear/drug effects , Hypoglycemic Agents/pharmacology , Male , Memory/drug effects , Metformin/pharmacology , Porphobilinogen Synthase/metabolism , Rats, Wistar , Sodium-Potassium-Exchanging ATPase/metabolism , Streptozocin , Thiobarbituric Acid Reactive Substances/metabolism , Vitamins/therapeutic use
5.
Biomed Pharmacother ; 66(3): 206-12, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22475627

ABSTRACT

The aim of the present study was to investigate the effects in vivo and in vitro of nicotine, an important immunosuppressive agent, on NTPDase and ADA activities in lymphocytes of adult rats. The following nicotine doses in vivo study were evaluated: 0.0, 0.25 and 1.0mg/kg/day injected subcutaneously in rats for 10days. The activity of the enzymes were significantly decreased with nicotine 0.25 and 1mg/kg which inhibited ATP (22%, 54%), ADP (44%, 30%) hydrolysis and adenosine (43%, 34%) deamination, respectively. The expression of the protein NTPDase in rat lymphocytes was decreased to nicotine 1mg/kg and the lymphocytes count was decreased in both nicotine doses studied. The purine levels measured in serum of the rats treated with nicotine 0.25mg/kg significantly increased to ATP (39%), ADP (39%) and adenosine (303%). The nicotine exposure marker was determinate by level of cotinine level which significantly increased in rats treated with nicotine 0.25 (39%) and 1mg/kg (131%) when compared to rats that received only saline. The second set of study was in vitro assay which the ATP-ADP-adenosine hydrolysis were decreased by nicotine concentrations 1mM (0% - 0% - 16%, respectively), 5mM (42% - 32% - 74%, respectively), 10mM (80% - 27% - 80%, respectively) and 50mM (96% - 49% - 98%, respectively) when compared with the control group. We suggest that alterations in the activities of these enzymes may contribute to the understanding of the mechanisms involved in the suppression of immune response caused by nicotine.


Subject(s)
Lymphocytes/drug effects , Lymphocytes/enzymology , Nicotine/pharmacology , Nucleotidases/metabolism , Adenosine/metabolism , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Animals , Cotinine/metabolism , Hydrolysis/drug effects , Lymphocytes/metabolism , Male , Purines/metabolism , Rats , Rats, Wistar
6.
Biometals ; 24(5): 959-71, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21553242

ABSTRACT

The possible role of zinc (Zn) to reverse the oxidative stress caused by mercury (Hg) was investigated in Pfaffia glomerata plantlets. Thirty-day-old acclimatized plantlets of P. glomerata were exposed to four treatments: control, 50 µM Zn, 50 µM Hg and 50 µM Zn + 50 µM Hg for 9 days. In Zn + Hg treatment, shoot and root Hg concentrations were 59 and 24% smaller than that plants exposed to 50 µM Hg added alone. An increase in the Zn concentration in the shoot of plants exposed to Zn + Hg occurred, although in the roots Zn concentration was not altered, when compared to the control. Fresh and dry weights, as well as the activity of δ-aminolevulinic acid dehydratase (δ-ALA-D) in Hg-treated plants were significantly reduced. Percentage survival, fresh and dry weights and δ-ALA-D activity of plants treated by 50 µM Zn + 50 µM Hg were greater than of that treated by Hg alone. Moreover, Zn treatment reduced the lipid peroxidation caused by Hg, being this effect related to increased root superoxide dismutase activity, and shoot catalase and ascorbate peroxidase activities. In conclusion, the presence of Zn in the substrate caused a significant reduction in the oxidative stress induced by Hg.


Subject(s)
Amaranthaceae/drug effects , Mercury/pharmacology , Oxidative Stress/drug effects , Zinc/pharmacology , Amaranthaceae/metabolism , Dose-Response Relationship, Drug , Plant Roots/drug effects , Plant Roots/metabolism , Plant Shoots/drug effects , Plant Shoots/metabolism
7.
Plant Physiol Biochem ; 48(8): 683-9, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20554214

ABSTRACT

Aluminum (Al) is one of the most abundant elements of the planet and exposure to this metal can cause oxidative stress and lead to various signs of toxicity in plants. Plants are essential organisms for the environment as well as food for humans and animals. The toxic effect of aluminum is the major cause of decreased crop productivity. Thus, the objective of the present study was to analyze the effects of aluminum on the activity of antioxidant enzymes such as catalase (CAT - E.C. 1.11.1.6), superoxide dismutase (SOD - E.C.1.15.1.1) and ascorbate peroxidase (APX - E.C. 1.11.1.11), and on lipid peroxidation, electrolyte leakage percentage (ELP) and chlorophyll and protein oxidation levels in Cucumis sativus L. (cv. Aodai). Seedlings were grown at different concentrations of aluminum ranging from 1 to 2000 microM for 10 days. The increase in ELP and H(2)O(2) production observed in the seedlings may be related to the decreased efficiency of the antioxidant system at higher aluminum concentrations. The antioxidant system was unable to overcome toxicity resulting in negative effects such as lipid peroxidation, protein oxidation and a decrease in the growth of Cucumis seedlings. Aluminum toxicity triggered alterations in the antioxidant and physiological status of growing cucumber seedlings.


Subject(s)
Aluminum/toxicity , Cucumis sativus/drug effects , Oxidative Stress/drug effects , Seedlings/drug effects , Ascorbate Peroxidases , Catalase/metabolism , Chlorophyll/metabolism , Cucumis sativus/enzymology , Cucumis sativus/metabolism , Dose-Response Relationship, Drug , Electrolytes/metabolism , Hydrogen Peroxide/metabolism , Lipid Peroxidation/drug effects , Peroxidases/metabolism , Plant Proteins/metabolism , Plant Roots/drug effects , Plant Roots/enzymology , Plant Roots/metabolism , Plant Shoots/drug effects , Plant Shoots/enzymology , Plant Shoots/metabolism , Seedlings/enzymology , Seedlings/metabolism , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...