Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Artif Intell Med ; 105: 101852, 2020 05.
Article in English | MEDLINE | ID: mdl-32505420

ABSTRACT

The increasing access to brain signal data using electroencephalography creates new opportunities to study electrophysiological brain activity and perform ambulatory diagnoses of neurological disorders. This work proposes a pairwise distance learning approach for schizophrenia classification relying on the spectral properties of the signal. To be able to handle clinical trials with a limited number of observations (i.e. case and/or control individuals), we propose a Siamese neural network architecture to learn a discriminative feature space from pairwise combinations of observations per channel. In this way, the multivariate order of the signal is used as a form of data augmentation, further supporting the network generalization ability. Convolutional layers with parameters learned under a cosine contrastive loss are proposed to adequately explore spectral images derived from the brain signal. The proposed approach for schizophrenia diagnostic was tested on reference clinical trial data under resting-state protocol, achieving 0.95 ±â€¯0.05 accuracy, 0.98 ±â€¯0.02 sensitivity and 0.92 ±â€¯0.07 specificity. Results show that the features extracted using the proposed neural network are remarkably superior than baselines to diagnose schizophrenia (+20pp in accuracy and sensitivity), suggesting the existence of non-trivial electrophysiological brain patterns able to capture discriminative neuroplasticity profiles among individuals. The code is available on Github: https://github.com/DCalhas/siamese_schizophrenia_eeg.


Subject(s)
Education, Distance , Algorithms , Brain/diagnostic imaging , Electroencephalography , Humans , Neural Networks, Computer
SELECTION OF CITATIONS
SEARCH DETAIL
...