Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Front Immunol ; 13: 958820, 2022.
Article in English | MEDLINE | ID: mdl-36189282

ABSTRACT

Chikungunya fever is a viral disease transmitted by mosquitoes of the genus Aedes. The infection is usually symptomatic and most common symptoms are fever accompanied by joint pain and swelling. In most cases symptoms subside within a week. However, severe prolonged and disabling joint pain, that may persist for several months, even years, are reported. Although the pathogenesis of Chikungunya infection is not fully understood, the evolution to severe disease seems to be associated with the activation of immune mechanisms and the action of inflammatory mediators. Platelets are recognized as inflammatory cells with fundamental activities in the immune response, maintenance of vascular stability and pathogenicity of several inflammatory and infectious diseases. Although the involvement of platelets in the pathogenesis of viral diseases has gained attention in recent years, their activation in Chikungunya has not been explored. The aim of this study was to analyze platelet activation and the possible role of platelets in the amplification of the inflammatory response during Chikungunya infection. We prospectively included 132 patients attended at the Quinta D'Or hospital and 25 healthy volunteers during the 2016 epidemic in Rio de Janeiro, Brazil. We observed increased expression of CD62P on the surface of platelets, as well as increased plasma levels of CD62P and platelet-derived inflammatory mediators indicating that the Chikungunya infection leads to platelet activation. In addition, platelets from chikungunya patients exhibit increased expression of NLRP3, caspase 4, and cleaved IL-1ß, suggestive of platelet-inflammasome engagement during chikungunya infection. In vitro experiments confirmed that the Chikungunya virus directly activates platelets. Moreover, we observed that platelet activation and soluble p-selectin at the onset of symptoms were associated with development of chronic forms of the disease. Collectively, our data suggest platelet involvement in the immune processes and inflammatory amplification triggered by the infection.


Subject(s)
Chikungunya Fever , Inflammasomes , Animals , Arthralgia , Brazil , Caspases , Humans , Inflammasomes/metabolism , Inflammation Mediators , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , P-Selectin , Platelet Activation
2.
Sci Rep ; 9(1): 2760, 2019 02 26.
Article in English | MEDLINE | ID: mdl-30809003

ABSTRACT

Brazil, which is hyperendemic for dengue virus (DENV), has had recent Zika (ZIKV) and (CHIKV) Chikungunya virus outbreaks. Since March 2016, CHIKV is the arbovirus infection most frequently diagnosed in Rio de Janeiro. In the analysis of 1835 syndromic patients, screened by real time RT-PCR, 56.4% of the cases were attributed to CHIKV, 29.6% to ZIKV, and 14.1% to DENV-4. Sequence analyses of CHIKV from sixteen samples revealed that the East-Central-South-African (ECSA) genotype of CHIKV has been circulating in Brazil since 2013 [95% bayesian credible interval (BCI): 03/2012-10/2013], almost a year before it was detected by arbovirus surveillance program. Brazilian cases are related to Central African Republic sequences from 1980's. To the best of our knowledge, given the available sequence published here and elsewhere, the ECSA genotype was likely introduced to Rio de Janeiro early on 2014 (02/2014; BCI: 07/2013-08/2014) through a single event, after primary circulation in the Bahia state at the Northestern Brazil in the previous year. The observation that the ECSA genotype of CHIKV was circulating undetected underscores the need for improvements in molecular methods for viral surveillance.


Subject(s)
Chikungunya Fever/diagnosis , Chikungunya virus/genetics , Bayes Theorem , Brazil/epidemiology , Chikungunya Fever/epidemiology , Chikungunya Fever/virology , Chikungunya virus/classification , Chikungunya virus/isolation & purification , Genotype , High-Throughput Nucleotide Sequencing , Humans , Phylogeny , RNA, Viral/chemistry , RNA, Viral/metabolism , Sequence Analysis, RNA
3.
J Med Food ; 22(2): 211-224, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30526214

ABSTRACT

P2Y2 and P2Y4 receptors are physiologically activated by uridine 5'-triphosphate (UTP) and are widely expressed in many cell types in humans. P2Y2 plays an important role in inflammation and proliferation of tumor cells, which could be attenuated with the use of antagonists. However, little is known about the physiological functions related to P2Y4, due to the lack of selective ligands for these receptors. This can be solved through the search for novel compounds with antagonistic activity. The aim of this study was to discover new potential antagonist candidates for P2Y2 and P2Y4 receptors from natural products. We applied a calcium measurement methodology to identify new antagonist candidates for these receptors. First, we established optimal conditions for the calcium assay using J774.G8, a murine macrophage cell line, which expresses functional P2Y2 and P2Y4 receptors and then, we performed the screening of plant extracts at a cutoff concentration of 50 µg/mL. ATP and ionomycin, known intracellular calcium inductors, were used to stimulate cells. The calculated EC50 were 11 µM and 103 nM, respectively. These cells also responded to the UTP stimulation with an EC50 of 1.021 µM. Screening assays were performed and a total of 100 extracts from Brazilian plants were tested. Joannesia princeps Vell. (stem) and Peixotoa A. Juss (flower and leaf) extracts stood out due to their ability to inhibit UTP-induced responses without causing cytotoxicity, and presented an IC50 of 32.32, 14.99, and 12.98 µg/mL, respectively. Collectively, our results point to the discovery of potential antagonist candidates from Brazilian flora for UTP-activated receptors.


Subject(s)
Magnoliopsida , Plant Extracts/pharmacology , Plants/chemistry , Receptors, Purinergic P2/metabolism , Uridine Triphosphate/pharmacology , Adenosine Triphosphate , Animals , Brazil , Calcium/metabolism , Flowers , Inhibitory Concentration 50 , Ionomycin , Macrophages/drug effects , Macrophages/metabolism , Mice , Plant Leaves , Uridine
5.
PLoS One ; 10(5): e0123089, 2015.
Article in English | MEDLINE | ID: mdl-25993132

ABSTRACT

ATP physiologically activates the P2X7 receptor (P2X7R), a member of the P2X ionotropic receptor family. When activated by high concentrations of ATP (i.e., at inflammation sites), this receptor is capable of forming a pore that allows molecules of up to 900 Da to pass through. This receptor is upregulated in several diseases, particularly leukemia, rheumatoid arthritis and Alzheimer's disease. A selective antagonist of this receptor could be useful in the treatment of P2X7R activation-related diseases. In the present study, we have evaluated several parameters using in vitro protocols to validate a high-throughput screening (HTS) method to identify P2X7R antagonists. We generated dose-response curves to determine the EC50 value of the known agonist ATP and the ICs50 values for the known antagonists Brilliant Blue G (BBG) and oxidized ATP (OATP). The values obtained were consistent with those found in the literature (0.7 ± 0.07 mM, 1.3-2.6 µM and 173-285 µM for ATP, BBG and OATP, respectively) [corrected].The Z-factor, an important statistical tool that can be used to validate the robustness and suitability of an HTS assay, was 0.635 for PI uptake and 0.867 for LY uptake. No inter-operator variation was observed, and the results obtained using our improved method were reproducible. Our data indicate that our assay is suitable for the selective and reliable evaluation of P2X7 activity in multiwell plates using spectrophotometry-based methodology. This method might improve the high-throughput screening of conventional chemical or natural product libraries for possible candidate P2X7R antagonist or agonist.


Subject(s)
Purinergic P2X Receptor Antagonists/pharmacology , Adenosine Triphosphate/metabolism , Animals , Cell Line , High-Throughput Screening Assays , Mice
6.
Front Physiol ; 5: 366, 2014.
Article in English | MEDLINE | ID: mdl-25309454

ABSTRACT

Residual oil fly ash (ROFA) is a common pollutant in areas where oil is burned. This particulate matter (PM) with a broad distribution of particle diameters can be inhaled by human beings and putatively damage their respiratory system. Although some studies deal with cultured cells, animals, and even epidemiological issues, so far a comprehensive analysis of respiratory outcomes as a function of the time elapsed after exposure to a low dose of ROFA is wanted. Thus, we aimed to investigate the time course of mechanical, histological, and inflammatory lung changes, as well as neutrophils in the blood, in mice exposed to ROFA until 5 days after exposure. BALB/c mice (25 ± 5 g) were randomly divided into 7 groups and intranasally instilled with either 10 µL of sterile saline solution (0.9% NaCl, CTRL) or ROFA (0.2 µg in 10 µL of saline solution). Pulmonary mechanics, histology (normal and collapsed alveoli, mononuclear and polymorphonuclear cells, and ultrastructure), neutrophils (in blood and bronchoalveolar lavage fluid) were determined at 6 h in CTRL and at 6, 24, 48, 72, 96, and 120 h after ROFA exposure. ROFA contained metal elements, especially iron, polycyclic aromatic hydrocarbons (PAHs), and organochlorines. Lung resistive pressure augmented early (6 h) in the course of lung injury and other mechanical, histological and inflammatory parameters increased at 24 h, returning to control values at 120 h. Blood neutrophilia was present only at 24 and 48 h after exposure. Swelling of endothelial cells with adherent neutrophils was detected after ROFA instillation. No neutrophils were present in the lavage fluid. In conclusion, the exposure to ROFA, even in low doses, induced early changes in pulmonary mechanics, lung histology and accumulation of neutrophils in blood of mice that lasted for 4 days and disappeared spontaneously.

7.
Planta Med ; 80(13): 1072-8, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25197953

ABSTRACT

Curine is a bisbenzylisoquinoline alkaloid that is isolated from Chondrodendron platyphyllum, a plant that is used to treat malaria, inflammation, and pain. Recent reports have demonstrated the antiallergic effects of curine at nontoxic doses. However, its anti-inflammatory and analgesic properties remain to be elucidated. This study investigated the anti-inflammatory and analgesic effects of curine in mice. We analyzed the effects of an oral treatment with curine in the formation of paw edema, vascular permeability, abdominal contortion, licking behavior, and hyperalgesia using different inflammatory stimuli. Curine significantly inhibited the formation of paw edema by decreasing vascular permeability, inhibited the acetic acid-induced writhing response, inhibited the licking behavior during inflammation but not during the neurogenic phase of the formalin test, and inhibited carrageenan-induced hyperalgesia. Finally, curine inhibited prostaglandin E2 production in vitro without affecting cyclooxygenase-2 expression. The effects of curine treatment were similar to the effects of indomethacin, but were different from the effects of morphine treatment, suggesting that the analgesic effects of curine do not result from the direct inhibition of neuronal activation but instead depend on anti-inflammatory mechanisms that, at least in part, result from the inhibition of prostaglandin E2 production. In conclusion, curine presents anti-inflammatory and analgesic effects at nontoxic doses and has the potential for use in anti-inflammatory drug development.


Subject(s)
Analgesics/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Dinoprostone/antagonists & inhibitors , Inflammation/drug therapy , Isoquinolines/therapeutic use , Menispermaceae/chemistry , Pain/drug therapy , Analgesics/isolation & purification , Analgesics/pharmacology , Animals , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/pharmacology , Behavior, Animal/drug effects , Cyclooxygenase 2/metabolism , Isoquinolines/isolation & purification , Isoquinolines/pharmacology , Mice , Pain Measurement
8.
J Ethnopharmacol ; 155(2): 1118-24, 2014 Sep 11.
Article in English | MEDLINE | ID: mdl-24969825

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Curine is a bisbenzylisoquinoline alkaloid and the major constituent isolated from Chondrodendron platyphyllum, a plant that is used to treat inflammatory diseases in Brazilian folk medicine. This study investigates the effectiveness of curine on mast cell-dependent responses in mice. MATERIALS AND METHODS: To induce mast cell-dependent responses, Swiss mice were subcutaneously sensitized with ovalbumin (OVA-12 µg/mouse) and Al(OH)3 in a 0.9% NaCl solution. Fifteen days later, the animals were challenged with OVA through different pathways. Alternatively, the animals were injected with compound 48/80 or histamine, and several parameters, including anaphylaxis, itching, edema and inflammatory mediator production, were analyzed. Promethazine, cromoglycate, and verapamil were used as control drugs, and all of the treatments were performed 1h before the challenges. RESULTS: Curine pre-treatment significantly inhibited the scratching behavior and the paw edema induced by either compound 48/80 or OVA, and this protective effect was comparable in magnitude with those associated with treatment with either cromoglycate or verapamil. In contrast, curine was a weak inhibitor of histamine-induced paw edema, which was completely inhibited by promethazine. Curine and verapamil significantly inhibited pleural protein extravasations and prostaglandin D2 (PGD2) and cysteinyl leukotrienes (CysLTs) production following allergen-induced pleurisy. Furthermore, like verapamil, curine inhibited the anaphylactic shock caused by either compound 48/80 or an allergen. In in vitro settings, these treatments also inhibited degranulation as well as PGD2 and CysLT production through IgE-dependent activation of the mast cell lineage RBL-2H3. CONCLUSION: Curine significantly inhibited immediate allergic reactions through mechanisms more related to mast cell stabilization and activation inhibition than interference with the pro-inflammatory effects of mast cell products. These findings are in line with the hypothesis that the alkaloid curine may be beneficial for the treatment of allergic disorders.


Subject(s)
Hypersensitivity/drug therapy , Isoquinolines/pharmacology , Mast Cells/drug effects , Menispermaceae/chemistry , Allergens/immunology , Animals , Anti-Allergic Agents/isolation & purification , Anti-Allergic Agents/pharmacology , Brazil , Disease Models, Animal , Histamine/immunology , Hypersensitivity/immunology , Hypersensitivity, Immediate/drug therapy , Hypersensitivity, Immediate/immunology , Immunoglobulin E/immunology , Isoquinolines/isolation & purification , Male , Mast Cells/immunology , Medicine, Traditional , Mice , Ovalbumin/immunology
9.
Pharmaceuticals (Basel) ; 6(5): 650-8, 2013 Apr 29.
Article in English | MEDLINE | ID: mdl-24276172

ABSTRACT

Natural products have reemerged in traditional medicine as a potential source of new molecules or phytomedicines to help with health disorders. It has been established that members of the P2X subfamily, ATP-gated ion channels, are crucial to the inflammatory process and pain signalization. As such, several preclinical studies have demonstrated that P2X2R, P2X3R, P2X4R and P2X7R are promising pharmacological targets to control inflammatory and pain disorders. Several studies have indicated that natural products could be a good source of the new specific molecules needed for the treatment of diseases linked to inflammation and pain disorders through the regulation of these receptors. Herein, we discuss and give an overview of the applicability of natural products as a source to obtain P2X receptors (P2XR) selective antagonists for use in clinical treatment, which require further investigation.

10.
Toxicol Appl Pharmacol ; 273(1): 19-26, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-23994558

ABSTRACT

Allergic asthma is a chronic inflammatory airway disease with increasing prevalence around the world. Current asthma therapy includes drugs that usually cause significant side effects, justifying the search for new anti-asthmatic drugs. Curine is a bisbenzylisoquinoline alkaloid that modulates calcium influx in many cell types; however, its anti-allergic and putative toxic effects remain to be elucidated. Our aim was to investigate the effects of curine on eosinophil activation and airway hyper-responsiveness (AHR) and to characterize its potential toxic effects. We used a mouse model of allergic asthma induced by sensitization and challenge with ovalbumin (OVA) to evaluate the anti-allergic effects of oral treatment with curine. The oral administration of curine significantly inhibited eosinophilic inflammation, eosinophil lipid body formation and AHR in animals challenged with OVA compared with animals in the untreated group. The curine treatment also reduced eotaxin and IL-13 production triggered by OVA. Verapamil, a calcium channel antagonist, had similar anti-allergic properties, and curine pre-treatment inhibited the calcium-induced tracheal contractile response ex-vivo, suggesting that the mechanism by which curine exerts its effects is through the inhibition of a calcium-dependent response. A toxicological evaluation showed that orally administered curine did not significantly alter the biochemical, hematological, behavioral and physical parameters measured in the experimental animals compared with saline-treated animals. In conclusion, curine showed anti-allergic activity through mechanisms that involve inhibition of IL-13 and eotaxin and of Ca(++) influx, without inducing evident toxicity and as such, has the potential for the development of anti-asthmatic drugs.


Subject(s)
Anti-Asthmatic Agents/toxicity , Asthma/drug therapy , Eosinophils/drug effects , Isoquinolines/toxicity , Administration, Oral , Animals , Bronchial Hyperreactivity/drug therapy , Calcium/metabolism , Disease Models, Animal , Eosinophils/metabolism , Inflammation/drug therapy , Interleukin-13/antagonists & inhibitors , Interleukin-13/metabolism , Male , Menispermaceae/chemistry , Mice , Mice, Inbred BALB C , No-Observed-Adverse-Effect Level , Ovalbumin/metabolism , Rats , Rats, Wistar , Verapamil/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...