Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Environ Manage ; 67(1): 91-108, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33205243

ABSTRACT

Governance gaps at both the federal and state level increasingly necessitate local action and remain a key driver of community-based solutions. A localist paradigm-encompassing models such as community-based management, citizen science, and cooperative research-offers a promising approach for bridging governance gaps by engaging citizens, co-producing knowledge, fostering trust, and developing innovative solutions to address complex conservation challenges. Yet, despite notable successes, significant barriers constrain widespread implementation of localist approaches. This is particularly evident in natural resource-dependent communities. Rural communities are increasingly faced with a range of conservation challenges related to rapid climate and land-use changes but often they lack the capacity to support locally based initiatives to better anticipate, plan for, and mitigate these changes. We examined four diverse conservation cases based on localist approaches in Maine, USA, to bring to the fore key factors that influence outcomes in different social-ecological contexts. We compared cases along three frequently discussed dimensions-governance systems, social adaptive capacities, and technology and data characteristics and found that localist outcomes vary widely depending on key metrics within each of these dimensions. There is no single way to advance localism, but we offer multiple ways to incorporate a community-based perspective into management. This synthesis of data from our collective participatory research projects provides guidance to maximize the potential of localist conservation approaches in complex social and biophysical arenas.


Subject(s)
Conservation of Natural Resources , Natural Resources
2.
Nat Geosci ; 10(11): 809-815, 2017.
Article in English | MEDLINE | ID: mdl-30079098

ABSTRACT

Governments worldwide do not adequately protect their limited freshwater systems and therefore place freshwater functions and attendant ecosystem services at risk. The best available scientific evidence compels enhanced protections for freshwater systems, especially for impermanent streams and wetlands outside of floodplains that are particularly vulnerable to alteration or destruction. New approaches to freshwater sustainability - implemented through scientifically informed adaptive management - are required to protect freshwater systems through periods of changing societal needs. One such approach introduced in the US in 2015 is the Clean Water Rule, which clarified the jurisdictional scope for federally protected waters. However, within hours of its implementation litigants convinced the US Court of Appeals for the Sixth Circuit to stay the rule, and the subsequently elected administration has now placed it under review for potential revision or rescission. Regardless of its outcome at the federal level, policy and management discussions initiated by the propagation of this rare rulemaking event have potential far-reaching implications at all levels of government across the US and worldwide. At this timely juncture, we provide a scientific rationale and three policy options for all levels of government to meaningfully enhance protection of these vulnerable waters. A fourth option, a 'do-nothing' approach, is wholly inconsistent with the well-established scientific evidence of the importance of these vulnerable waters.

3.
Wetlands (Wilmington) ; 37(4): 801-806, 2017.
Article in English | MEDLINE | ID: mdl-30147216

ABSTRACT

We evaluated the current literature, coupled with our collective research expertise, on surface-water connectivity of wetlands considered to be "geographically isolated" (sensu Tiner Wetlands 23:494-516, 2003a) to critically assess the scientific foundation of grouping wetlands based on the singular condition of being surrounded by uplands. The most recent research on wetlands considered to be "geographically isolated" shows the difficulties in grouping an ecological resource that does not reliably indicate lack of surface water connectivity in order to meet legal, regulatory, or scientific needs. Additionally, the practice of identifying "geographically isolated wetlands" based on distance from a stream can result in gross overestimates of the number of wetlands lacking ecologically important surface-water connections. Our findings do not support use of the overly simplistic label of "geographically isolated wetlands". Wetlands surrounded by uplands vary in function and surface-water connections based on wetland landscape setting, context, climate, and geographic region and should be evaluated as such. We found that the "geographically isolated" grouping does not reflect our understanding of the hydrologic variability of these wetlands and hence does not benefit conservation of the Nation's diverse wetland resources. Therefore, we strongly discourage use of categorizations that provide overly simplistic views of surface-water connectivity of wetlands fully embedded in upland landscapes.

4.
Proc Natl Acad Sci U S A ; 113(8): 1978-86, 2016 Feb 23.
Article in English | MEDLINE | ID: mdl-26858425

ABSTRACT

Geographically isolated wetlands (GIWs), those surrounded by uplands, exchange materials, energy, and organisms with other elements in hydrological and habitat networks, contributing to landscape functions, such as flow generation, nutrient and sediment retention, and biodiversity support. GIWs constitute most of the wetlands in many North American landscapes, provide a disproportionately large fraction of wetland edges where many functions are enhanced, and form complexes with other water bodies to create spatial and temporal heterogeneity in the timing, flow paths, and magnitude of network connectivity. These attributes signal a critical role for GIWs in sustaining a portfolio of landscape functions, but legal protections remain weak despite preferential loss from many landscapes. GIWs lack persistent surface water connections, but this condition does not imply the absence of hydrological, biogeochemical, and biological exchanges with nearby and downstream waters. Although hydrological and biogeochemical connectivity is often episodic or slow (e.g., via groundwater), hydrologic continuity and limited evaporative solute enrichment suggest both flow generation and solute and sediment retention. Similarly, whereas biological connectivity usually requires overland dispersal, numerous organisms, including many rare or threatened species, use both GIWs and downstream waters at different times or life stages, suggesting that GIWs are critical elements of landscape habitat mosaics. Indeed, weaker hydrologic connectivity with downstream waters and constrained biological connectivity with other landscape elements are precisely what enhances some GIW functions and enables others. Based on analysis of wetland geography and synthesis of wetland functions, we argue that sustaining landscape functions requires conserving the entire continuum of wetland connectivity, including GIWs.


Subject(s)
Models, Biological , Wetlands , North America
5.
Proc Natl Acad Sci U S A ; 111(30): 11002-6, 2014 Jul 29.
Article in English | MEDLINE | ID: mdl-25002496

ABSTRACT

Vernal pools are far more important for providing ecosystem services than one would predict based on their small size. However, prevailing resource-management strategies are not effectively conserving pools and other small natural features on private lands. Solutions are complicated by tensions between private property and societal rights, uncertainties over resource location and function, diverse stakeholders, and fragmented regulatory authority. The development and testing of new conservation approaches that link scientific knowledge, stakeholder decision-making, and conservation outcomes are important responses to this conservation dilemma. Drawing from a 15-y history of vernal pool conservation efforts in Maine, we describe the coevolution of pool conservation and research approaches, focusing on how research-based knowledge was produced and used in support of management decisions. As management shifted from reactive, top-down approaches to proactive and flexible approaches, research shifted from an ecology-focused program to an interdisciplinary program based on social-ecological systems. The most effective strategies for linking scientific knowledge with action changed as the decision-makers, knowledge needs, and context for vernal pool management advanced. Interactions among stakeholders increased the extent to which knowledge was coproduced and shifted the objective of stakeholder engagement from outreach to research collaboration and development of innovative conservation approaches. New conservation strategies were possible because of the flexible, solutions-oriented collaborations and trust between scientists and decision-makers (fostered over 15 y) and interdisciplinary, engaged research. Solutions to the dilemma of conserving small natural features on private lands, and analogous sustainability science challenges, will benefit from repeated negotiations of the science-policy boundary.


Subject(s)
Conservation of Natural Resources , Decision Making, Organizational , Ecosystem , Animals , Humans , Maine
6.
Environ Manage ; 52(6): 1369-85, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24065385

ABSTRACT

The Vernal Pool Mapping and Assessment Program (VPMAP) was initiated in 2007 to create a vernal pool database as a planning tool to foster local compliance with new state vernal pool regulations. In the northeastern United States, vernal pools are seasonal wetlands that provide critical breeding habitat for a number of amphibians and invertebrates and provide important resting and foraging habitat for some rare and endangered state-listed species. Using participant observation, interviews, and focus groups, we examined the engagement of municipal officials and private landowners in VPMAP. Important outcomes of municipal and landowner engagement included mobilization of town support for proactive planning, improved awareness and understanding of vernal pools, and increased interactions between program coordinators, municipal officials, and private landowners. Challenges to municipal and landowner engagement included an inconsistency in expectations between coordinators and municipal officials and a lack of time and sufficient information for follow-up with landowners participating in VPMAP. Our study highlights the importance of developing relationships among coordinators, municipal officials, and private landowners in facilitating positive outcomes for all stakeholders and for effective resource management. We suggest an expanded citizen science model that focuses on improving two-way communication among project coordinators, municipal officials, and local citizens and places communication with private landowners on par with volunteer citizen scientist recruitment and field training. Lessons learned from this research can inform the design and implementation of citizen science projects on private land.


Subject(s)
Community-Based Participatory Research/methods , Conservation of Natural Resources/methods , Public-Private Sector Partnerships , Wetlands , Focus Groups , Interviews as Topic , Maine
7.
Dis Aquat Organ ; 100(3): 201-10, 2012 Sep 12.
Article in English | MEDLINE | ID: mdl-22968788

ABSTRACT

The chytridiomycete fungus Batrachochytrium dendrobatidis (Bd) colonizes mouthparts of amphibian larvae and superficial epidermis of post-metamorphic amphibians, causing the disease chytridiomycosis. Fungal growth within host cells has been documented by light and transmission electron microscopy; however, entry of the fungus into host cells has not. Our objective was to document how Bd enters host cells in the wood frog Lithobates sylvaticus, a species at high mortality risk for chytridiomycosis, and the bullfrog L. catesbeianus, a species at low mortality risk for chytridiomycosis. We inoculated frogs and documented infection with transmission electron microscopy. Zoospores encysted on the skin surface and produced morphologically similar germination tubes in both host species that penetrated host cell membranes and enabled transfer of zoospore contents into host cells. Documenting fungal and epidermal ultrastructure during host invasion furthers our understanding of Bd development and the pathogenesis of chytridiomycosis.


Subject(s)
Anura/microbiology , Chytridiomycota/physiology , Chytridiomycota/ultrastructure , Epidermis/ultrastructure , Aging , Animals , Microscopy, Electron, Transmission , Species Specificity
8.
J Wildl Dis ; 48(3): 575-82, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22740523

ABSTRACT

Chytridiomycosis, an emerging infectious disease caused by the chytrid fungus Batrachochytrium dendrobatidis, threatens anuran populations worldwide. Effects of B. dendrobatidis on frog species are variable. Some species typically develop nonlethal infections and may function as carriers; others typically develop lethal infections that can lead to population declines. Nonlethal infections in the bullfrog (Lithobates catesbeianus) are well-documented. In contrast, recently metamorphosed wood frogs (L. sylvaticus) can die from chytridiomycosis. We conducted an ex-situ experiment between May and July 2010 to determine whether B. dendrobatidis-infected bullfrogs could transmit the fungus to wood frog tadpoles when the two species shared a body of water. We tested for B. dendrobatidis infections with quantitative polymerase chain reactions (qPCR) in a subsample of the wood frog tadpoles and in all metamorphosed wood frogs and compared risk of death of froglets exposed and unexposed to infected bullfrogs. We detected B. dendrobatidis sporadically in subsampled treatment tadpoles (nine of 90, 10%) and frequently in treatment froglets (112 of 113, 99.1%). Pooled risk of froglet death was higher (P<0.001) in treatment enclosures than in control enclosures. Our results indicate that, at the low infection loads bullfrogs tend to carry, swabbing for PCR analyses may underestimate prevalence of B. dendrobatidis in this species. We highlight bullfrog disease screening as a management challenge, especially in light of exotic bullfrog colonies on multiple continents and large-scale global trade in this species. We document the importance of quantifying lethal and sublethal effects of bullfrog vectors on B. dendrobatidis-susceptible species.


Subject(s)
Chytridiomycota , Communicable Diseases, Emerging/veterinary , Disease Transmission, Infectious/veterinary , Mycoses/veterinary , Rana catesbeiana/microbiology , Animals , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/transmission , Disease Reservoirs/microbiology , Disease Reservoirs/veterinary , Larva/microbiology , Mycoses/mortality , Mycoses/transmission , New England/epidemiology , Population Dynamics , Species Specificity
9.
J Environ Manage ; 95(1): 1-8, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22115505

ABSTRACT

In this study, we describe local decision maker attitudes towards vernal pools to inform science communication and enhance vernal pool conservation efforts. We conducted interviews with town planning board and conservation commission members (n = 9) from two towns in the State of Maine in the northeastern United States. We then mailed a questionnaire to a stratified random sample of planning board members in August and September 2007 with a response rate of 48.4% (n = 320). The majority of survey respondents favored the protection and conservation of vernal pools in their towns. Decision makers were familiar with the term "vernal pool" and demonstrated positive attitudes to vernal pools in general. General appreciation and willingness to conserve vernal pools predicted support for the 2006 revisions to the Natural Resource Protection Act regulating Significant Vernal Pools. However, 48% of respondents were unaware of this law and neither prior knowledge of the law nor workshop attendance predicted support for the vernal pool law. Further, concerns about private property rights and development restrictions predicted disagreement with the vernal pool law. We conclude that science communication must rely on specific frames of reference, be sensitive to cultural values, and occur in an iterative system to link knowledge and action in support of vernal pool conservation.


Subject(s)
Attitude , Conservation of Natural Resources , Environmental Policy , Local Government , Ponds , Administrative Personnel/psychology , Communication , Decision Making , Humans , Interviews as Topic , Maine , Surveys and Questionnaires
10.
Ecology ; 89(9): 2563-74, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18831177

ABSTRACT

To predict the effects of terrestrial habitat change on amphibian populations, we need to know how amphibians respond to habitat heterogeneity, and whether habitat choice remains consistent throughout the life-history cycle. We conducted four experiments to evaluate how the spatial distribution of juvenile wood frogs, Rana sylvatica (including both overall abundance and localized density), was influenced by habitat choice and habitat structure, and how this relationship changed with spatial scale and behavioral phase. The four experiments included (1) habitat manipulation on replicated 10-ha landscapes surrounding breeding pools; (2) short-term experiments with individual frogs emigrating through a manipulated landscape of 1 m wide hexagonal patches; and habitat manipulations in (3) small (4-m2); and (4) large (100-m2) enclosures with multiple individuals to compare behavior both during and following emigration. The spatial distribution of juvenile wood frogs following emigration resulted from differences in the scale at which juvenile amphibians responded to habitat heterogeneity during active vs. settled behavioral phases. During emigration, juvenile wood frogs responded to coarse-scale variation in habitat (selection between 2.2-ha forest treatments) but not to fine-scale variation. After settling, however, animals showed habitat selection at much smaller scales (2-4 m2). This resulted in high densities of animals in small patches of suitable habitat where they experienced rapid mortality. No evidence of density-dependent habitat selection was seen, with juveniles typically choosing to remain at extremely high densities in high-quality habitat, rather than occupying low-quality habitat. These experiments demonstrate how prediction of the terrestrial distribution of juvenile amphibians requires understanding of the complex behavioral responses to habitat heterogeneity. Understanding these patterns is important, given that human alterations to amphibian habitats may generate extremely high densities of animals, resulting in high density-dependent mortality.


Subject(s)
Ecosystem , Metamorphosis, Biological , Ranidae/physiology , Animals , Population Density
11.
Environ Manage ; 32(1): 141-51, 2003 Jul.
Article in English | MEDLINE | ID: mdl-14703919

ABSTRACT

Vernal pools are vulnerable to loss through development and agricultural and forestry practices owing to their isolation from open water bodies and their small size. Some vernal pool-dependent species are already listed in New England as Endangered, Threatened, or Species of Special Concern. Vernal pool creation is becoming more common in compensatory mitigation as open water ponds, in general, may be easier to create than wooded wetlands. However, research on vernal pool creation is limited. A recent National Research Council study (2001) cites vernal pools as "challenging to recreate." We reviewed documentation on 15 vernal pool creation projects in New England that were required by federal regulatory action. Our purpose was to determine whether vernal pool creation for compensatory mitigation in New England replaced key vernal pool functions by assessing project goals and documentation (including mitigation plans, pool design criteria, monitoring protocols, and performance standards). Our results indicate that creation attempts often fail to replicate lost pool functions. Pool design specifications are often based on conjecture rather than on reference wetlands or created pools that function successfully. Project monitoring lacks consistency and reliability, and record keeping by regulatory agencies is inadequate. Strengthening of protection of isolated wetlands in general, and standardization across all aspects of vernal pool creation, is needed to ensure success and to promote conservation of the long-term landscape functions of vernal pools.


Subject(s)
Conservation of Natural Resources , Environmental Monitoring , Water Supply , Agriculture , Ecosystem , Environment Design , Forestry , New England
SELECTION OF CITATIONS
SEARCH DETAIL
...