Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 9415, 2023 06 09.
Article in English | MEDLINE | ID: mdl-37296299

ABSTRACT

Neonicotinoid pesticides negatively impact bumble bee health, even at sublethal concentrations. Responses to the neonicotinoid imidacloprid have been studied largely at individual adult and colony levels, focusing mostly on behavioral and physiological effects. Data from developing larvae, whose health is critical for colony success, are deficient, particularly at the molecular level where transcriptomes can reveal disruption of fundamental biological pathways. We investigated gene expression of Bombus impatiens larvae exposed through food provisions to two field-realistic imidacloprid concentrations (0.7 and 7.0 ppb). We hypothesized both concentrations would alter gene expression, but the higher concentration would have greater qualitative and quantitative effects. We found 678 genes differentially expressed under both imidacloprid exposures relative to controls, including mitochondrial activity, development, and DNA replication genes. However, more genes were differentially expressed with higher imidacloprid exposure; uniquely differentially expressed genes included starvation response and cuticle genes. The former may partially result from reduced pollen use, monitored to verify food provision use and provide additional context to results. A smaller differentially expressed set only in lower concentration larvae, included neural development and cell growth genes. Our findings show varying molecular consequences under different field-realistic neonicotinoid concentrations, and that even low concentrations may affect fundamental biological processes.


Subject(s)
Imidazoles , Insecticides , Bees/genetics , Animals , Larva/genetics , Neonicotinoids/toxicity , Nitro Compounds/toxicity , Gene Expression , Insecticides/toxicity
2.
Front Insect Sci ; 3: 1207058, 2023.
Article in English | MEDLINE | ID: mdl-38469464

ABSTRACT

Diet can have an array of both direct and indirect effects on an organism's health and fitness, which can influence the outcomes of host-pathogen interactions. Land use changes, which could impact diet quantity and quality, have imposed foraging stress on important natural and agricultural pollinators. Diet related stress could exacerbate existing negative impacts of pathogen infection. Accounting for most of its nutritional intake in terms of protein and many micronutrients, pollen can influence bee health through changes in immunity, infection, and various aspects of individual and colony fitness. We investigate how adult pollen consumption, pollen type, and pollen diversity influence bumble bee Bombus impatiens survival and infection outcomes for a microsporidian pathogen Nosema (Vairimorpha) bombi. Experimental pathogen exposures of larvae occurred in microcolonies and newly emerged adult workers were given one of three predominantly monofloral, polyfloral, or no pollen diets. Workers were assessed for size, pollen consumption, infection 8-days following adult-eclosion, survival, and the presence of extracellular microsporidian spores at death. Pollen diet treatment, specifically absence of pollen, and infection independently reduced survival, but we saw no effects of pollen, pollen type, or pollen diet diversity on infection outcomes. The latter suggests infection outcomes were likely already set, prior to differential diets. Although infection outcomes were not altered by pollen diet in our study, it highlights both pathogen infection and pollen availability as important for bumble bee health, and these factors may interact at different stages of bumble bee development, at the colony level, or under different dietary regimes.

3.
Proc Biol Sci ; 288(1947): 20202922, 2021 03 31.
Article in English | MEDLINE | ID: mdl-33784861

ABSTRACT

Numerous threats are putting pollinator health and essential ecosystem pollination services in jeopardy. Although individual threats are widely studied, their co-occurrence may exacerbate negative effects, as posited by the multiple stressor hypothesis. A prominent branch of this hypothesis concerns pesticide-pathogen co-exposure. A landscape analysis demonstrated a positive association between local chlorothalonil fungicide use and microsporidian pathogen (Nosema bombi) prevalence in declining bumblebee species (Bombus spp.), suggesting an interaction deserving further investigation. We tested the multiple stressor hypothesis with field-realistic chlorothalonil and N. bombi exposures in worker-produced B. impatiens microcolonies. Chlorothalonil was not avoided in preference assays, setting the stage for pesticide-pathogen co-exposure. However, contrary to the multiple stressor hypothesis, co-exposure did not affect survival. Bees showed surprising tolerance to Nosema infection, which was also unaffected by chlorothalonil exposure. However, previously fungicide-exposed infected bees carried more transmission-ready spores. Our use of a non-declining bumblebee and potential higher chlorothalonil exposures under some scenarios could mean stronger individual or interactive effects in certain field settings. Yet, our results alone suggest consequences of pesticide co-exposure for pathogen dynamics in host communities. This underlies the importance of considering both within- and between-host processes when addressing the multiple stressor hypothesis in relation to pathogens.


Subject(s)
Ecosystem , Nosema , Animals , Bees , Nitriles/toxicity
4.
Med Sci Educ ; 31(2): 863-872, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33688449

ABSTRACT

The COVID-19 pandemic disrupted medical education. In-person classes and clinical rotations were urgently canceled, followed by a historic and unprecedented migration to online teaching. Most medical school courses were not designed to be fully online, and faculty and students are novices in the process. The purpose of this article is to provide recommendations for educators to optimize their approach to online curricular transformation. Mindful teaching online creates presences that set climate and support discourse, establish routines that build practice, model professional expectations, and challenge but support learners.

5.
Acad Med ; 95(9S A Snapshot of Medical Student Education in the United States and Canada: Reports From 145 Schools): S266-S269, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33626697
6.
JMIR Med Educ ; 5(2): e14651, 2019 Oct 31.
Article in English | MEDLINE | ID: mdl-31674919

ABSTRACT

BACKGROUND: Medical education outcomes and clinical data exist in multiple unconnected databases, resulting in 3 problems: (1) it is difficult to connect learner outcomes with patient outcomes, (2) learners cannot be easily tracked over time through the education-training-practice continuum, and (3) no standard methodology ensures quality and privacy of the data. OBJECTIVE: The purpose of this study was to develop a Medical Education Outcomes Center (MEOC) to integrate education data and to build a framework to standardize the intake and processing of requests for using these data. METHODS: An inventory of over 100 data sources owned or utilized by the medical school was conducted, and nearly 2 dozen of these data sources have been vetted and integrated into the MEOC. In addition, the American Medical Association (AMA) Physician Masterfile data of the University of Minnesota Medical School (UMMS) graduates were linked to the data from the National Provider Identifier (NPI) registry to develop a mechanism to connect alumni practice data to education data. RESULTS: Over 160 data requests have been fulfilled, culminating in a range of outcomes analyses, including support of accreditation efforts. The MEOC received data on 13,092 UMMS graduates in the AMA Physician Masterfile and could link 10,443 with NPI numbers and began to explore their practice demographics. The technical and operational work to expand the MEOC continues. Next steps are to link the educational data to the clinical practice data through NPI numbers to assess the effectiveness of our medical education programs by the clinical outcomes of our graduates. CONCLUSIONS: The MEOC provides a replicable framework to allow other schools to more effectively operate their programs and drive innovation.

7.
Integr Comp Biol ; 59(4): 1103-1113, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31065666

ABSTRACT

Climate change-related increases in thermal variability and rapid temperature shifts will affect organisms in multiple ways, including imposing physiological stress. Furthermore, the effects of temperature may alter the outcome of biotic interactions, such as those with pathogens and parasites. In the context of host-parasite interactions, the beneficial acclimation hypothesis posits that shifts away from acclimation or optimum performance temperatures will impose physiological stress on hosts and will affect their ability to resist parasite infection. We investigated the beneficial acclimation hypothesis in a bumble bee-trypanosome parasite system. Freshly emerged adult worker bumble bees, Bombus impatiens, were acclimated to 21, 26, or 29°C. They were subsequently experimentally exposed to the parasite, Crithidia bombi, and placed in a performance temperature that was the same as the acclimation temperature (constant) or one of the other temperatures (mismatched). Prevalence of parasite transmission was checked 4 and 6 days post-parasite exposure, and infection intensity in the gut was quantified at 8 days post-exposure. Parasite strain, host colony, and host size had significant effects on transmission prevalence and infection load. However, neither transmission nor infection intensity were significantly different between constant and mismatched thermal regimes. Furthermore, acclimation temperature, performance temperature, and the interaction of acclimation and performance temperatures had no significant effects on infection outcomes. These results, counter to predictions of the beneficial acclimation hypothesis, suggest that infection outcomes in this host-parasite system are robust to thermal variation within typically experienced ranges. This could be a consequence of adaptation to commonly experienced natural thermal regimes or a result of individual and colony level heterothermy in bumble bees. However, thermal variability may still have a detrimental effect on more sensitive stages or species, or when extreme climatic events push temperatures outside of the normally experienced range.


Subject(s)
Bees/physiology , Bees/parasitology , Crithidia/physiology , Host-Parasite Interactions , Acclimatization , Animals , Hot Temperature
8.
Sci Rep ; 8(1): 2074, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29391545

ABSTRACT

Ecological and evolutionary pressures on hosts and parasites jointly determine infection success. In pollinators, parasite exposure to floral phytochemicals may influence between-host transmission and within-host replication. In the bumble bee parasite Crithidia bombi, strains vary in phytochemical resistance, and resistance increases under in vitro selection, implying that resistance/infectivity trade-offs could maintain intraspecific variation in resistance. We assessed costs and benefits of in vitro selection for resistance to the floral phytochemical eugenol on C. bombi infection in Bombus impatiens fed eugenol-rich and eugenol-free diets. We also assessed infection-induced changes in host preferences for eugenol. In vitro, eugenol-exposed cells initially increased in size, but normalized during adaptation. Selection for eugenol resistance resulted in considerable (55%) but non-significant reductions in infection intensity; bee colony and body size were the strongest predictors of infection. Dietary eugenol did not alter infection, and infected bees preferred eugenol-free over eugenol-containing solutions. Although direct effects of eugenol exposure could influence between-host transmission at flowers, dietary eugenol did not ameliorate infection in bees. Limited within-host benefits of resistance, and possible trade-offs between resistance and infectivity, may relax selection for eugenol resistance and promote inter-strain variation in resistance. However, infection-induced dietary shifts could influence pollinator-mediated selection on floral traits.


Subject(s)
Antiparasitic Agents/pharmacology , Bees/parasitology , Crithidia/drug effects , Eugenol/pharmacology , Evolution, Molecular , Host Specificity , Animals , Crithidia/genetics , Crithidia/pathogenicity , Drug Resistance , Selection, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...