Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Food Res Int ; 119: 283-290, 2019 05.
Article in English | MEDLINE | ID: mdl-30884658

ABSTRACT

Enrichment of food and beverages with bioactive lipids is an important initiative to improve consumer's health. Eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids present in fish oil have been reported as those with the greatest bioactivity. Emulsions are an interesting alternative to incorporate functional oil; however, there are few studies on food microemulsions as a way to include this kind of compounds. The present work is intended to deepen the analysis of the Kolliphor RH40 emulsifier with potential application in food microemulsions, characterizing its micellar size and thermo-rheological properties, as well as analyzing the effect of environmental stress on physical and oxidative stability of a microemulsion containing fish oil. No significant changes in droplets size (<15 nm) or in their distribution was observed in a wide range of pH (3-9), ionic strength (0.1-10% CaCl2), centrifuging and different thermal treatments. During freezing, a slight increase in size (<21 nm) was detected, maintaining its optically transparent appearance. The high surface area of the microemulsion droplets led to the decrease in oxidative stability compared to fish oil in bulk. However, when microemulsions were stored at 4 °C, the EPA and DHA contents did not change during storage for 60 days.


Subject(s)
Chemical Phenomena , Emulsions/chemistry , Fish Oils/chemistry , Food Handling , Food Storage , Freezing , Hot Temperature , Hydrogen-Ion Concentration , Osmolar Concentration , Oxidation-Reduction , Particle Size , Rheology , Temperature
2.
Food Res Int ; 107: 41-47, 2018 05.
Article in English | MEDLINE | ID: mdl-29580502

ABSTRACT

Microemulsions are thermodynamically stable systems that have attracted considerable attention in the food industry as delivery systems for many hydrophobic nutrients. These spontaneous systems are highly dependent on ingredients and composition. In this work phase diagrams were constructed using two surfactants (Kolliphor RH40 and ELP), water, sunflower oil, and ethanol as cosurfactant, evaluating their physicochemical properties. Stability of the systems was studied at 25 and 60 °C, monitoring turbidity at 550 nm for over a month to identify the microemulsion region. Conductivity was measured to classify between water-in-oil and oil-in-water microemulsions. The phase diagram constructed with Kolliphor RH40 exhibited a larger microemulsion area than that formulated with Kolliphor ELP. All formulations showed a monomodal droplet size distribution with low polydispersity index (<0.30) and a mean droplet size below 20 nm. Systems with higher water content presented a Newtonian behavior; increasing the dispersed phase content produced a weak gel-like structure with pseudoplastic behavior under flow conditions that was satisfactorily modeled to obtain structural parameters.


Subject(s)
Castor Oil/chemistry , Ethanol/chemistry , Food Handling/methods , Sunflower Oil/chemistry , Surface-Active Agents/chemistry , Water/chemistry , Elasticity , Electric Conductivity , Emulsions , Gels , Models, Chemical , Particle Size , Phase Transition , Rheology , Temperature , Time Factors , Viscosity
3.
J Sep Sci ; 38(9): 1591-600, 2015 May.
Article in English | MEDLINE | ID: mdl-25711461

ABSTRACT

Chagas disease constitutes a major public health problem in Latin America. Human breast milk is a biological sample of great importance for the analysis of therapeutic drugs, as unwanted exposure through breast milk could result in pharmacological effects in the nursing infant. Thus, the goal of breast milk drug analysis is to inquire to which extent a neonate may be exposed to a drug during lactation. In this work, we developed an analytical technique to quantify benznidazole and nifurtimox (the two antichagasic drugs currently available for medical treatment) in human breast milk, with a simple sample pretreatment followed by an ionic-liquid-based dispersive liquid-liquid microextraction combined with high-performance liquid chromatography and UV detection. For this technique, the ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate has been used as the "extraction solvent." A central composite design was used to find the optimum values for the significant variables affecting the extraction process: volume of ionic liquid, volume of dispersant solvent, ionic strength, and pH. At the optimum working conditions, the average recoveries were 77.5 and 89.7%, the limits of detection were 0.06 and 0.09 µg/mL and the interday reproducibilities were 6.25 and 5.77% for benznidazole and nifurtimox, respectively. The proposed methodology can be considered sensitive, simple, robust, accurate, and green.


Subject(s)
Chagas Disease , Ionic Liquids/chemistry , Liquid Phase Microextraction , Milk, Human/chemistry , Nifurtimox/analysis , Nitroimidazoles/analysis , Trypanocidal Agents/analysis , Chromatography, High Pressure Liquid , Humans , Imidazoles/chemistry , Molecular Structure , Ultraviolet Rays
4.
Meat Sci ; 79(3): 589-94, 2008 Jul.
Article in English | MEDLINE | ID: mdl-22062921

ABSTRACT

Low-fat sausages were prepared with fresh chicken breast meat and formulated with different levels of added fat, whey protein concentrate, and hydrocolloids (xanthan and guar gums) to study the effect of composition on the stress relaxation behavior of the products. Stress relaxation experiments were conducted on precooked sausages at 25°C. Generalized Maxwell and empirical Peleg models were used to predict the stress relaxation behavior of the material. A model with seven maxwellian elements in parallel with a pure elastic element showed a very good agreement with experimental data. Results show that the proposed model satisfactorily fits the experimental data better than Peleg's model or Maxwell models with less elements. The relaxation time distribution functions were obtained. The characteristic relaxation time was shorter (2500s) for the formulations with no added fat which produced a less elastic product while the sausages with added fat showed longer characteristic relaxation time (5000s). The stress relaxation experiment differentiated the viscoelastic nature of different formulations due to reduction of fat content.

SELECTION OF CITATIONS
SEARCH DETAIL
...