Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Sustain Chem Eng ; 12(20): 7703-7712, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38783841

ABSTRACT

Environmentally persistent polystyrene or polyacrylic beads are used as supports in enzyme large-scale bioprocesses, including conversion glucose isomerization for high-fructose corn syrup production, hydrolysis of lactose, and synthesis of active pharmaceutical ingredients. In this paper, we report the development of a novel sustainable and scalable method to produce diaminated cellulose beads (DAB) as highly efficient alternative supports for industrially relevant lipases. Regenerated cellulose beads were grafted with diaminated aliphatic hydrocarbons via periodate oxidation and reductive amination. The oxidation step indicated that aldehyde content can be easily tuned through the reaction time and concentration of reactants. Reductive amination of dialdehyde cellulose was more efficient as the length of the diaminated hydrocarbon compound increased. Morphological analysis of DAB showed that cellulose chemical grafting enabled the preservation of the bead shape and internal structure upon freeze-drying. Enzymatic degradability studies demonstrated that chemical functionalization did not undermine enzyme cellulose hydrolysis. The addition of aminated moieties on cellulose dramatically increased absorption efficiency for all industrially relevant lipases used, reaching 100% for Thermomyces lanuginosus lipase (TLL). Storage and recyclability experiments demonstrated that enzymes were retained and recyclable for at least nine cycles, although the activity gradually declined after each cycle. Medium chain triacylglycerol hydrolysis in a SpinChem reactor using TLL immobilized on 1,6 DAB exhibited higher activity compared to acrylic beads (588 vs 459 U/g) suggesting that biodegradable cellulose-based materials could be a valid and attractive alternative to plastics carriers.

2.
ACS Sustain Chem Eng ; 11(12): 4749-4758, 2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37008180

ABSTRACT

The controlled delivery of micronutrients to soil and plants is essential to increase agricultural yields. However, this is today achieved using fossil fuel-derived plastic carriers, posing environmental risks and contributing to global carbon emissions. In this work, a novel and efficient way to prepare biodegradable zinc-impregnated cellulose acetate beads for use as controlled release fertilizers is presented. Cellulose acetate solutions in DMSO were dropped into aqueous antisolvent solutions of different zinc salts. The droplets underwent phase inversion, forming solid cellulose acetate beads containing zinc, as a function of zinc salt type and concentration. Even higher values of zinc uptake (up to 15.5%) were obtained when zinc acetate was added to the cellulose acetate-DMSO solution, prior to dropping in aqueous zinc salt antisolvent solutions. The release profile in water of the beads prepared using the different solvents was linked to the properties of the counter-ions via the Hofmeister series. Studies in soil showed the potential for longer release times, up to 130 days for zinc sulfate beads. These results, together with the efficient bead production method, demonstrate the potential of zinc-impregnated cellulose acetate beads to replace the plastic-based controlled delivery products used today, contributing to the reduction of carbon emissions and potential environmental impacts due to the uptake of plastic in plants and animals.

3.
Langmuir ; 38(11): 3370-3379, 2022 03 22.
Article in English | MEDLINE | ID: mdl-35261240

ABSTRACT

Electrostatic attractions are essential in any complex formation between the nanofibrils of the opposite charge for a specific application, such as microcapsule production. Here, we used cationized cellulose nanofibril (CCNF)-stabilized Pickering emulsions (PEs) as templates, and the electrostatic interactions were induced by adding oxidized cellulose nanofibrils (OCNFs) at the oil-water interface to form microcapsules (MCs). The oppositely charged cellulose nanofibrils enhanced the solidity of interfaces, allowing the encapsulation of Nile red (NR) in sunflower oil droplets. Microcapsules exhibited a low and controlled release of NR at room temperature. Furthermore, membrane emulsification was employed to scale up the preparation of microcapsules with sunflower oil (SFO) encapsulated by CCNF/OCNF complex networks.


Subject(s)
Cellulose , Capsules , Emulsions , Static Electricity , Sunflower Oil
4.
Biomacromolecules ; 22(2): 754-762, 2021 02 08.
Article in English | MEDLINE | ID: mdl-33404227

ABSTRACT

The extensive use of antibiotics over the last decades is responsible for the emergence of multidrug-resistant (MDR) microorganisms that are challenging health care systems worldwide. The use of alternative antimicrobial materials could mitigate the selection of new MDR strains by reducing antibiotic overuse. This paper describes the design of enzyme-based antimicrobial cellulose beads containing a covalently coupled glucose oxidase from Aspergillus niger (GOx) able to release antimicrobial concentrations of hydrogen peroxide (H2O2) (≈ 1.8 mM). The material preparation was optimized to obtain the best performance in terms of mechanical resistance, shelf life, and H2O2 production. As a proof of concept, agar inhibition halo assays (Kirby-Bauer test) against model pathogens were performed. The two most relevant factors affecting the bead functionalization process were the degree of oxidation and the pH used for the enzyme binding process. Slightly acidic conditions during the functionalization process (pH 6) showed the best results for the GOx/cellulose system. The functionalized beads inhibited the growth of all the microorganisms assayed, confirming the release of sufficient antimicrobial levels of H2O2. The maximum inhibition efficiency was exhibited toward Pseudomonas aeruginosa (P. aeruginosa) and Escherichia coli (E. coli), although significant inhibitory effects toward methicillin-resistant Staphylococcus aureus (MRSA) and S. aureus were also observed. These enzyme-functionalized cellulose beads represent an inexpensive, sustainable, and biocompatible antimicrobial material with potential use in many applications, including the manufacturing of biomedical products and additives for food preservation.


Subject(s)
Anti-Infective Agents , Methicillin-Resistant Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Cellulose , Escherichia coli , Hydrogen Peroxide , Microbial Sensitivity Tests , Staphylococcus aureus
5.
Biomacromolecules ; 21(12): 5315-5322, 2020 12 14.
Article in English | MEDLINE | ID: mdl-33202126

ABSTRACT

The use of hydrogen peroxide-releasing enzymes as a component to produce alternative and sustainable antimicrobial materials has aroused interest in the scientific community. However, the preparation of such materials requires an effective enzyme binding method that often involves the use of expensive and toxic chemicals. Here, we describe the development of an enzyme-based hydrogen peroxide-producing regenerated cellulose film (RCF) in which a cellobiohydrolase (TrCBHI) and a cellobiose dehydrogenase (MtCDHA) were efficiently adsorbed, 90.38 ± 2.2 and 82.40 ± 5.7%, respectively, without making use of cross-linkers. The enzyme adsorption kinetics and binding isotherm experiments showed high affinity of the proteins possessing cellulose-binding modules for RCF, suggesting that binding on regenerated cellulose via specific interactions can be an alternative method for enzyme immobilization. Resistance to compression and porosity at a micrometer scale were found to be tunable by changing cellulose concentration prior to film regeneration. The self-degradation process, triggered by stacking TrCBHI and MtCDHA (previously immobilized onto separate RCF), produced 0.15 nmol/min·cm2 of H2O2. Moreover, the production of H2O2 was sustained for at least 24 h reaching a concentration of ∼2 mM. The activity of MtCDHA immobilized on RCF was not affected by reuse for at least 3 days (1 cycle/day), suggesting that no significant enzyme leakage occurred in that timeframe. In the material herein designed, cellulose (regenerated from a 1-ethyl-3-methylimidazolium acetate/dimethyl sulfoxide (DMSO) solution) serves both as support and substrate for the immobilized enzymes. The sequential reaction led to the production of H2O2 at a micromolar-millimolar level revealing the potential use of the material as a self-degradable antimicrobial agent.


Subject(s)
Cellulose , Hydrogen Peroxide , Adsorption , Cellulose 1,4-beta-Cellobiosidase , Enzymes, Immobilized
6.
ACS Appl Polym Mater ; 2(3): 1213-1221, 2020 Mar 13.
Article in English | MEDLINE | ID: mdl-32296779

ABSTRACT

Through charge-driven interfacial complexation, we produced millimeter-sized spheroidal hydrogels (SH) with a core-shell structure allowing long-term stability in aqueous media. The SH were fabricated by extruding, dropwise, a cationic cellulose nanofibril (CCNF) dispersion into an oppositely charged poly(acrylic acid) (PAA) bath. The SH have a solid-like CCNF-PAA shell, acting as a semipermeable membrane, and a liquid-like CCNF suspension in the core. Swelling behavior of the SH was dependent on the osmotic pressure of the aging media. Swelling could be suppressed by increasing the ionic strength of the media as this enhanced interfibrillar interactions and thus strengthened the outer gel membrane. We further validated a potential application of SH as reusable matrixes for glucose oxidase (GOx) entrapment, where the SH work as microreactors from which substrate and product are freely able to migrate through the SH shell while avoiding enzyme leakage.

SELECTION OF CITATIONS
SEARCH DETAIL
...