Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
RSC Med Chem ; 15(5): 1424-1451, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38799223

ABSTRACT

Genome stability is governed by chromatin structural dynamics, which modify DNA accessibility under the influence of intra- and inter-nucleosomal contacts, histone post-translational modifications (PTMs) and variations, besides the activity of ATP-dependent chromatin remodelers. These are the main ways by which chromatin dynamics are regulated and connected to nuclear processes, which when dysregulated can frequently be associated with most malignancies. Recently, functional crosstalk between histone modifications and chromatin remodeling has emerged as a critical regulatory method of transcriptional regulation during cell destiny choice. Therefore, improving therapeutic outcomes for patients by focusing on epigenetic targets dysregulated in malignancies should help prevent cancer cells from developing resistance to anticancer treatments. For this reason, SET domain bifurcated histone lysine methyltransferase 1 (SETDB1) has gained a lot of attention recently as a cancer target. SETDB1 is a histone lysine methyltransferase that plays an important role in marking euchromatic and heterochromatic regions. Hence, it promotes the silencing of tumor suppressor genes and contributes to carcinogenesis. Some studies revealed that SETDB1 was overexpressed in various human cancer types, which enhanced tumor growth and metastasis. Thus, SETDB1 appears to be an attractive epigenetic target for new cancer treatments. In this review, we have discussed the effects of its overexpression on the progression of tumors and the development of inhibitor drugs that specifically target this enzyme.

2.
ACS Omega ; 8(42): 38961-38982, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37901514

ABSTRACT

Chagas disease is a parasitosis caused by Trypanosoma cruzi. Cruzain, the major cysteine protease from T. cruzi, is an excellent therapeutic target in the search for antichagasic drugs. It is important in the role of cell invasion, replication, differentiation, and metabolism of the parasite. In this work, we developed and assessed multiple quantitative structure-activity relationship (QSAR) models for a set of 61 cruzain inhibitors. These models include two-dimensional (2D) QSAR, three-dimensional (3D) QSAR, such as comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA), and Hologram QSAR (HQSAR). In total, we generated 10 major and 114 minor model variations. Molecular docking was used to successfully align the molecules. All CoMFA and CoMSIA models, which incorporate multiple fields, demonstrated robustness in our analysis. Steric fields exhibited satisfactory convergence in the contour maps, while the electrostatic field converged into a single small region. The HQSAR model taking into consideration only Atoms and Connectivity, with fragment sizes ranging from two to five atoms, was considered the best of the HQSAR variations, despite exhibiting a higher level of deviance. In total, 78 model variations meet the minimum requirements to be considered acceptable. We found that using as few as five descriptors it is possible to obtain robust results with 2D-QSAR. Models such as Random Forest, Tree Ensemble, Linear Regression, and HQSAR are recommended for working with large data sets, while the 3D-QSAR models are intended to study the geometry of the ligands, to optimize them into new and better performing antichagasics. Virtual Screening of a set of hydrazones, guided by the top-performing models, identified promising candidates for experimental validation. Among them, dv007 and dv015 exhibited consistently high predicted pIC50 values (7.26 and 7.24, respectively), making them compelling candidates for further drug development.

3.
Mol Inform ; 42(11): e202300115, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37550251

ABSTRACT

This study examines how two popular drug-likeness concepts used in early development, Lipinski Rule of Five (Ro5) and Veber's Rules, possibly affected drug profiles of FDA approved drugs since 1997. Our findings suggest that when all criteria are applied, relevant compounds may be excluded, addressing the harmfulness of blindly employing these rules. Of all oral drugs in the period used for this analysis, around 66 % conform to the RO5 and 85 % to Veber's Rules. Molecular Weight and calculated LogP showed low consistent values over time, apart from being the two least followed rules, challenging their relevance. On the other hand, hydrogen bond related rules and the number of rotatable bonds are amongst the most followed criteria and show exceptional consistency over time. Furthermore, our analysis indicates that topological polar surface area and total count of hydrogen bonds cannot be used as interchangeable parameters, contrary to the original proposal. This research enhances the comprehension of drug profiles that were FDA approved in the post-Lipinski period. Medicinal chemists could utilize these heuristics as a limited guide to direct their exploration of the oral bioavailability chemical space, but they must also steer the wheel to break these rules and explore different regions when necessary.


Subject(s)
Drug Approval , Biological Availability , Hydrogen Bonding , Molecular Weight
SELECTION OF CITATIONS
SEARCH DETAIL
...