Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 16839, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39039145

ABSTRACT

Understanding carbon dioxide emissions variability in volcanic regions is vital for detecting instabilities in the subvolcanic plumbing system, crucial for managing both volcanic and environmental risks. While changes in magmatic sources drive these variations, non-magmatic processes can complicate signal interpretation, especially in caldera environments. Here, geothermal systems can sequester CO2 within the bedrock through hydrothermal calcite precipitation, significantly impacting surface-level CO2 emissions. Unfortunately, few studies have explored this phenomenon, examining hydrothermal calcite origins and their effects on carbon balances and temporal gaseous patterns in active volcanic settings. Our study developed a specialized methodology for quantifying CO2 sequestered in hydrothermal calcites within alkaline caldera systems. We focused on analyzing hydrothermal calcite in lithics from volcanic deposits of eruptions of varying ages, Volcanic Explosivity Index (VEI), and eruptive vent locations to enhance the representativeness of the entire caldera bedrock. Unlike core samples from geothermal wells, which are infrequent and limited to specific depths, lithics can be easily collected, offering a comprehensive understanding of CO2 sequestration. Through extensive 3D textural characterization and isotopic investigations on hydrothermal calcite within lithic fragments from selected alkaline volcanic deposits in the Campi Flegrei caldera, our findings emphasized the significant influence of calcite sinks on the overall CO2 budget released by volcanoes throughout their evolution.

2.
Sci Rep ; 13(1): 18585, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37903927

ABSTRACT

Gas leakage from deep geologic storage formations to the Earth's surface is one of the main hazards in geological carbon sequestration and storage. Permeable sediment covers together with natural pathways, such as faults and/or fracture systems, are the main factors controlling surface leakages. Therefore, the characterization of natural systems, where large amounts of natural gases are released, can be helpful for understanding the effects of potential gas leaks from carbon dioxide storage systems. In this framework, we propose a combined use of high-resolution geoelectrical investigations (i.e. resistivity tomography and self-potential surveys) for reconstructing shallow buried fracture networks in the caprock and detecting preferential gas migration pathways before it enters the atmosphere. Such methodologies appear to be among the most suitable for the research purposes because of the strong dependence of the electrical properties of water-bearing permeable rock, or unconsolidated materials, on many factors relevant to CO2 storage (i.e. porosity, fracturing, water saturation, etc.). The effectiveness of the suggested geoelectrical approach is tested in an area of natural gas degassing (mainly CH4) located in the active fault zone of the Bolle della Malvizza (Southern Apennines, Italy), which could represent a natural analogue of gas storage sites due to the significant thicknesses (hundreds of meters) of impermeable rock (caprock) that is generally required to prevent carbon dioxide stored at depth from rising to the surface. The obtained 3D geophysical model, validated by the good correlation with geochemical data acquired in the study area and the available geological information, provided a structural and physical characterization of the investigated subsurface volume. Moreover, the time variations of the observed geophysical parameters allowed the identification of possible migration pathways of fluids to the surface.

3.
Sci Rep ; 13(1): 18445, 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37891232

ABSTRACT

Campi Flegrei (CF) is an active and densely populated caldera in Southern Italy, which has manifested signs of significant unrest in the last 50 years. Due to the high volcanic risk, monitoring networks of the most sensitive unrest indicators have been implemented and improved over time. Precious database constituted by geophysical and geochemical data allowed the study of the caldera unrest phases. In this paper we retrace the caldera history in the time span 2000-2020 by analyzing displacement, seismicity and geochemical time series in a unified framework. To this end, Principal Component Analysis (PCA) was firstly applied only on geochemical data because of their compositional nature. The retrieved first three components were successively analyzed via PCA together with the geophysical and thermodynamical variables. Our results suggest that three independent processes relay on geochemical observations: a heating/pressurizing of the hydrothermal system, a process related to magmatic fluids injection at the hydrothermal system roots, and third process probably connected with a deeper magmatic dynamic. The actual volcano alert state seems mainly linked to the variation of the hydrothermal system activity. Our approach made it possible to explore the interrelation among observations of different nature highlighting the importance of the relative driving processes over time.

4.
Sci Rep ; 13(1): 6651, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37095281

ABSTRACT

Digital rock physics offers powerful perspectives to investigate Earth materials in 3D and non-destructively. However, it has been poorly applied to microporous volcanic rocks due to their challenging microstructures, although they are studied for numerous volcanological, geothermal and engineering applications. Their rapid origin, in fact, leads to complex textures, where pores are dispersed in fine, heterogeneous and lithified matrices. We propose a framework to optimize their investigation and face innovative 3D/4D imaging challenges. A 3D multiscale study of a tuff was performed through X-ray microtomography and image-based simulations, finding that accurate characterizations of microstructure and petrophysical properties require high-resolution scans (≤ 4 µm/px). However, high-resolution imaging of large samples may need long times and hard X-rays, covering small rock volumes. To deal with these limitations, we implemented 2D/3D convolutional neural network and generative adversarial network-based super-resolution approaches. They can improve the quality of low-resolution scans, learning mapping functions from low-resolution to high-resolution images. This is one of the first efforts to apply deep learning-based super-resolution to unconventional non-sedimentary digital rocks and real scans. Our findings suggest that these approaches, and mainly 2D U-Net and pix2pix networks trained on paired data, can strongly facilitate high-resolution imaging of large microporous (volcanic) rocks.

5.
Article in English | MEDLINE | ID: mdl-35564526

ABSTRACT

Dissolved and suspended toxic elements in water discharged from abandoned and active mining areas pose several critical issues, since they represent a threat to the environment. In this work, we investigated the water, suspended particulates, and stream sediments of a 2.1 km long creek (Fosso della Chiusa) that is fed by waters draining the galleries of the abandoned Hg mining area of Abbadia San Salvatore (Mt. Amiata, Tuscany, central Italy). The geochemical results show evidence that the studied matrices are characterized by relatively high concentrations of Hg and As, whereas those of Sb are generally close to or below the instrumental detection limit. Independent of the matrices, the concentration of As decreases from the emergence point to the confluence with the Pagliola creek. In contrast, Hg concentrations display more complex behavior, as water and sediment are mainly characterized by concentrations that significantly increase along the water course. According to the geoaccumulation index (Igeo), sediments belong to Class 6 (extremely contaminated) for Hg. The Igeo of As varies from Class 6, close to the emergence, to Class 2 (moderately contaminated), dropping to Class 0 (uncontaminated) at the confluence with the Pagliola creek. Finally, the total mass load of Hg and As entering the Pagliola creek was computed to be 1.3 and 0.5 kg/year, respectively, when a mean flow rate of 40 L/s was considered. The calculated loads are relatively low, but, when the Fosso della Chiusa drainage basin is taken into account, the specific load is comparable to, or even higher than, those of other mining areas.


Subject(s)
Arsenic , Mercury , Water Pollutants, Chemical , Arsenic/analysis , Environmental Monitoring/methods , Geologic Sediments/chemistry , Mercury/analysis , Mining , Rivers/chemistry , Water , Water Pollutants, Chemical/analysis
6.
Molecules ; 26(7)2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33806142

ABSTRACT

Genetic decoding is flexible, due to programmed deviation of the ribosomes from standard translational rules, globally termed "recoding". In Archaea, recoding has been unequivocally determined only for termination codon readthrough events that regulate the incorporation of the unusual amino acids selenocysteine and pyrrolysine, and for -1 programmed frameshifting that allow the expression of a fully functional α-l-fucosidase in the crenarchaeon Saccharolobus solfataricus, in which several functional interrupted genes have been identified. Increasing evidence suggests that the flexibility of the genetic code decoding could provide an evolutionary advantage in extreme conditions, therefore, the identification and study of interrupted genes in extremophilic Archaea could be important from an astrobiological point of view, providing new information on the origin and evolution of the genetic code and on the limits of life on Earth. In order to shed some light on the mechanism of programmed -1 frameshifting in Archaea, here we report, for the first time, on the analysis of the transcription of this recoded archaeal α-l-fucosidase and of its full-length mutant in different growth conditions in vivo. We found that only the wild type mRNA significantly increased in S. solfataricus after cold shock and in cells grown in minimal medium containing hydrolyzed xyloglucan as carbon source. Our results indicated that the increased level of fucA mRNA cannot be explained by transcript up-regulation alone. A different mechanism related to translation efficiency is discussed.


Subject(s)
Archaeal Proteins/biosynthesis , Gene Expression Regulation, Archaeal , Gene Expression Regulation, Enzymologic , Protein Biosynthesis , Sulfolobaceae/enzymology , alpha-L-Fucosidase/biosynthesis , Archaeal Proteins/genetics , Cold-Shock Response , Sulfolobaceae/genetics , alpha-L-Fucosidase/genetics
7.
Environ Sci Pollut Res Int ; 28(34): 46614-46626, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33040287

ABSTRACT

The Italian Apennines are among the most important sources of freshwater for several Italian regions. With evidences of deep CO2-rich fluids intruding into aquifers in the nearby central-southern Apennines, a thorough investigation into the geochemistry of groundwater became critical to ensure the water quality in the area. Here, we show the main hydrogeochemical processes occurring in the Matese Massif (MM) aquifer through the investigation of 98 water samples collected from springs and water wells. All waters were classified as HCO3 type with Ca dominance (from 50% up to 97%) and variable amount of Mg (from 1% up to 49%). A multivariate statistical approach through the application of the factor analysis (FA) highlighted three main hydrogeochemical processes: (i) water-carbonate rock interactions mostly enhanced in peripheral areas of the MM by CO2 deep degassing; (ii) addition of NaCl-rich components linked to recharging process and to water mixing processes of the groundwater with a thermal component relatively rich in Cl, Na, and CO2; (iii) anthropogenic activities influencing groundwater composition at the foothills of MM. Furthermore, the first detailed TDIC, pCO2, and δ13C-TDIC distribution maps of the MM area have been created, which track chemical and isotopic anomalies in several peripheral areas (Pratella, Ailano, and Telese) throughout the region. These maps systematically highlight that the greater the amount of dissolved carbon occurs the heavier the C isotope enrichment, especially in the peripheral areas. Conversely, spring waters emerging at higher altitudes within MM are only slightly mineralized and associated with δ13C-TDIC values mainly characterized by recharging processes with the addition of biogenic carbon during the infiltration process through the soil.


Subject(s)
Groundwater , Water Pollutants, Chemical , Carbon , Environmental Monitoring , Italy , Water Pollutants, Chemical/analysis , Water Quality
8.
Sci Rep ; 10(1): 13782, 2020 08 13.
Article in English | MEDLINE | ID: mdl-32792572

ABSTRACT

Estimating the quantity of CO2 diffusively emitted from the Earth's surface has important implications for volcanic surveillance and global atmospheric CO2 budgets. However, the identification and quantification of non-hydrothermal contributions to CO2 release can be ambiguous. Here, we describe a multi-parametric approach employed at the Nisyros caldera, Aegean Arc, Greece, to assess the relative influence of deep and shallow gases released from the soil. In April 2019, we measured diffuse soil surface CO2 fluxes, together with their carbon isotope compositions, and at a depth of 80 cm, the CO2 concentration, soil temperature, and the activities of radon and thoron. The contributions of deep CO2 and biogenic CO2 fluxes were distinguished on the basis of their carbon isotope compositions. A Principal Component Analysis (PCA), performed on the measured parameters, effectively discriminates between a deep- and a shallow degassing component. The total CO2 output estimated from a relatively small testing area was two times higher with respect to that observed in a previous survey (October 2018). The difference is ascribed to variation in the soil biogenic CO2 production, that was high in April 2019 (a wet period) and low or absent in October 2018 (a dry period). Accounting for seasonal biogenic activity is therefore critical in monitoring and quantifying CO2 emissions in volcanic areas, because they can partially- or completely overwhelm the volcanic-hydrothermal signal.

9.
Sci Adv ; 4(1): e1701825, 2018 01.
Article in English | MEDLINE | ID: mdl-29326978

ABSTRACT

Intrusions are a ubiquitous component of mountain chains and testify to the emplacement of magma at depth. Understanding the emplacement and growth mechanisms of intrusions, such as diapiric or dike-like ascent, is critical to constrain the evolution and structure of the crust. Petrological and geological data allow us to reconstruct magma pathways and long-term magma differentiation and assembly processes. However, our ability to detect and reconstruct the short-term dynamics related to active intrusive episodes in mountain chains is embryonic, lacking recognized geophysical signals. We analyze an anomalously deep seismic sequence (maximum magnitude 5) characterized by low-frequency bursts of earthquakes that occurred in 2013 in the Apennine chain in Italy. We provide seismic evidences of fluid involvement in the earthquake nucleation process and identify a thermal anomaly in aquifers where CO2 of magmatic origin dissolves. We show that the intrusion of dike-like bodies in mountain chains may trigger earthquakes with magnitudes that may be relevant to seismic hazard assessment. These findings provide a new perspective on the emplacement mechanisms of intrusive bodies and the interpretation of the seismicity in mountain chains.

10.
Sensors (Basel) ; 17(6)2017 Jun 20.
Article in English | MEDLINE | ID: mdl-28632172

ABSTRACT

This work deals with the fabrication, prototyping, and experimental validation of a fiber optic thermo-hygrometer-based soil moisture sensor, useful for rainfall-induced landslide prevention applications. In particular, we recently proposed a new generation of fiber Bragg grating (FBGs)-based soil moisture sensors for irrigation purposes. This device was realized by integrating, inside a customized aluminum protection package, a FBG thermo-hygrometer with a polymer micro-porous membrane. Here, we first verify the limitations, in terms of the volumetric water content (VWC) measuring range, of this first version of the soil moisture sensor for its exploitation in landslide prevention applications. Successively, we present the development, prototyping, and experimental validation of a novel, optimized version of a soil VWC sensor, still based on a FBG thermo-hygrometer, but able to reliably monitor, continuously and in real-time, VWC values up to 37% when buried in the soil.

11.
Nat Commun ; 7: 13712, 2016 12 20.
Article in English | MEDLINE | ID: mdl-27996976

ABSTRACT

During the reawaking of a volcano, magmas migrating through the shallow crust have to pass through hydrothermal fluids and rocks. The resulting magma-hydrothermal interactions are still poorly understood, which impairs the ability to interpret volcano monitoring signals and perform hazard assessments. Here we use the results of physical and volatile saturation models to demonstrate that magmatic volatiles released by decompressing magmas at a critical degassing pressure (CDP) can drive volcanic unrest towards a critical state. We show that, at the CDP, the abrupt and voluminous release of H2O-rich magmatic gases can heat hydrothermal fluids and rocks, triggering an accelerating deformation that can ultimately culminate in rock failure and eruption. We propose that magma could be approaching the CDP at Campi Flegrei, a volcano in the metropolitan area of Naples, one of the most densely inhabited areas in the world, and where accelerating deformation and heating are currently being observed.

12.
Sci Rep ; 6: 22448, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26925957

ABSTRACT

We report evidences of active seabed doming and gas discharge few kilometers offshore from the Naples harbor (Italy). Pockmarks, mounds, and craters characterize the seabed. These morphologies represent the top of shallow crustal structures including pagodas, faults and folds affecting the present-day seabed. They record upraise, pressurization, and release of He and CO2 from mantle melts and decarbonation reactions of crustal rocks. These gases are likely similar to those that feed the hydrothermal systems of the Ischia, Campi Flegrei and Somma-Vesuvius active volcanoes, suggesting the occurrence of a mantle source variously mixed to crustal fluids beneath the Gulf of Naples. The seafloor swelling and breaching by gas upraising and pressurization processes require overpressures in the order of 2-3 MPa. Seabed doming, faulting, and gas discharge are manifestations of non-volcanic unrests potentially preluding submarine eruptions and/or hydrothermal explosions.

13.
PLoS One ; 9(7): e102456, 2014.
Article in English | MEDLINE | ID: mdl-25058537

ABSTRACT

Hule and Río Cuarto are maar lakes located 11 and 18 km N of Poás volcano along a 27 km long fracture zone, in the Central Volcanic Range of Costa Rica. Both lakes are characterized by a stable thermic and chemical stratification and recently they were affected by fish killing events likely related to the uprising of deep anoxic waters to the surface caused by rollover phenomena. The vertical profiles of temperature, pH, redox potential, chemical and isotopic compositions of water and dissolved gases, as well as prokaryotic diversity estimated by DNA fingerprinting and massive 16S rRNA pyrosequencing along the water column of the two lakes, have highlighted that different bio-geochemical processes occur in these meromictic lakes. Although the two lakes host different bacterial and archaeal phylogenetic groups, water and gas chemistry in both lakes is controlled by the same prokaryotic functions, especially regarding the CO2-CH4 cycle. Addition of hydrothermal CO2 through the bottom of the lakes plays a fundamental priming role in developing a stable water stratification and fuelling anoxic bacterial and archaeal populations. Methanogens and methane oxidizers as well as autotrophic and heterotrophic aerobic bacteria responsible of organic carbon recycling resulted to be stratified with depth and strictly related to the chemical-physical conditions and availability of free oxygen, affecting both the CO2 and CH4 chemical concentrations and their isotopic compositions along the water column. Hule and Río Cuarto lakes were demonstrated to contain a CO2 (CH4, N2)-rich gas reservoir mainly controlled by the interactions occurring between geosphere and biosphere. Thus, we introduced the term of bio-activity volcanic lakes to distinguish these lakes, which have analogues worldwide (e.g. Kivu: D.R.C.-Rwanda; Albano, Monticchio and Averno: Italy; Pavin: France) from volcanic lakes only characterized by geogenic CO2 reservoir such as Nyos and Monoun (Cameroon).


Subject(s)
Archaea/genetics , Bacteria/genetics , Lakes , RNA, Ribosomal, 16S/genetics , Archaea/classification , Archaea/growth & development , Bacteria/classification , Bacteria/growth & development , Carbon Dioxide/chemistry , Costa Rica , DNA Fingerprinting , Hydrogen-Ion Concentration , Hydrothermal Vents/chemistry , Hydrothermal Vents/microbiology , Lakes/chemistry , Lakes/microbiology , Methane/chemistry , Oxidation-Reduction , Oxygen/chemistry , Phylogeny , Volcanic Eruptions
SELECTION OF CITATIONS
SEARCH DETAIL
...