Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
EBioMedicine ; 98: 104856, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38251464

ABSTRACT

BACKGROUND: Diabetic foot ulcers (DFUs) are a common complication of diabetes, associated with important morbidity. Appropriate animal models of DFUs may improve drug development, and subsequently the success rate of clinical trials. However, while many models have been proposed, they are extremely heterogeneous, and no standard has emerged. We thus propose a systematic review with a network meta-analysis (NMA) to gather direct and indirect evidence, and compare the different mouse models of diabetes-related ulcers. METHODS: The systematic search was performed in Pubmed and Embase. The main outcomes were wound size measurement at days 3, 7, 11 and 15 (±1 day). The risk of bias and methodological quality of all included studies was assessed by using the Systematic Review Center for Laboratory animal Experimentation (SYRCLE) risk of bias tool. Meta-regressions were done on prespecified variables, including mouse strain, type of ulcer, sex, age, and use of a splint. FINDINGS: We included 295 studies. Among all models, only db/db, ob/ob, streptozotocin (STZ), and STZ + high fat diet mice showed a significantly delayed wound healing, compared with controls, at each time point. Age, sex and ulcer type had influence on wound healing, although not at all time points. INTERPRETATION: In conclusion, the db/db model is associated with the largest delay in wound healing The STZ model also exhibits significantly decreased wound healing. STZ + high fat diet and ob/ob mice may also be relevant models of diabetes-related ulcers, although the results rely on a more limited number of studies. FUNDING: This work was funded by the Agence Nationale de la Recherche (grant ANR-18-CE17-0017).


Subject(s)
Animal Experimentation , Diabetes Mellitus , Diabetic Foot , Animals , Mice , Network Meta-Analysis , Disease Models, Animal , Diabetic Foot/etiology , Diet, High-Fat , Streptozocin
2.
Physiol Rep ; 9(5): e14738, 2021 03.
Article in English | MEDLINE | ID: mdl-33682327

ABSTRACT

BACKGROUND: Intermittent hypoxia (IH) is the major feature of obstructive sleep apnea syndrome, well-known to induce cardiometabolic complications. We previously demonstrated that IH induces hyperinsulinemia and associated altered insulin signaling in adipose tissue, liver, and skeletal muscle, but impact of IH on cardiac insulin signaling and functional/structural consequences remains unknown. Therefore, the aims of this study were to investigate in both lean and obese mice the effects of chronic IH on the following: (1) cardiac insulin signaling and (2) cardiac remodeling and function. METHODS: C57BL/6 J male mice were fed low-fat (LFD) or high-fat (HFD) diet for 20 weeks, and exposed to IH (21-5% FiO2, 60 s cycle, 8 h/day) or normoxia (N) for the last 6 weeks. Systemic insulin sensitivity was evaluated by an insulin tolerance test. Cardiac remodeling and contractile function were assessed by cardiac ultrasonography. Ultimately, hearts were withdrawn for biochemical and histological analysis. RESULTS: In LFD mice, IH-induced hyperinsulinemia and systemic insulin resistance that were associated with increased phosphorylations of cardiac insulin receptor and Akt on Tyr1150 and Ser473 residues, respectively. In addition, IH significantly increased cardiac interstitial fibrosis and cardiac contractility. In the HFD group, IH did not exert any additional effect, nor on insulin/Akt signaling, nor on cardiac remodeling and function. CONCLUSION: Our study suggests that, despite systemic insulin resistance, IH exposure mediates an adaptive cardiac response in lean but not in obese mice. Further studies are needed to investigate which specific mechanisms are involved and to determine the long-term evolution of cardiac responses to IH.


Subject(s)
Hypoxia/metabolism , Insulin Resistance/physiology , Insulin/blood , Obesity/complications , Animals , Blood Glucose/metabolism , Disease Models, Animal , Hypoxia/physiopathology , Inflammation/metabolism , Inflammation/pathology , Liver/metabolism , Mice , Obesity/metabolism
3.
Sci Rep ; 8(1): 14692, 2018 10 02.
Article in English | MEDLINE | ID: mdl-30279536

ABSTRACT

Skin is a major barrier against external insults and is exposed to combinations of chemical and/or physical toxic agents. Co-exposure to the carcinogenic benzo[a]pyrene (B[a]P) and solar UV radiation is highly relevant in human health, especially in occupational safety. In vitro studies have suggested that UVB enhances B[a]P genotoxicity by activating the AhR pathway and overexpressing the cytochrome P450 enzymes responsible for the conversion of B[a]P into DNA damaging metabolites. Our present work involved more realistic conditions, namely ex vivo human skin explants and simulated sunlight (SSL) as a UV source. We found that topically applied B[a]P strongly induced expression of cutaneous cytochrome P450 genes and formation of DNA adducts. However, gene induction was significantly reduced when B[a]P was combined with SSL. Consequently, formation of BPDE-adducts was also reduced when B[a]P was associated with SSL. Similar results were obtained with primary cultures of human keratinocytes. These results indicate that UV significantly impairs B[a]P metabolism, and decreases rather than increases immediate toxicity. However, it cannot be ruled out that decreased metabolism leads to accumulation of B[a]P and delayed genotoxicity.


Subject(s)
Benzo(a)pyrene/radiation effects , Benzo(a)pyrene/toxicity , Mutagens/radiation effects , Mutagens/toxicity , Skin/drug effects , Skin/radiation effects , Sunlight/adverse effects , Cells, Cultured , Cytochrome P-450 Enzyme System/analysis , DNA Adducts/metabolism , Humans , Keratinocytes/drug effects , Keratinocytes/physiology , Keratinocytes/radiation effects , Models, Theoretical , Skin/pathology , Ultraviolet Rays/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...