Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Nutr Biochem ; 50: 16-25, 2017 12.
Article in English | MEDLINE | ID: mdl-28968517

ABSTRACT

Obesity and type 2 diabetes are characterized by subclinical inflammatory process. Changes in composition or modulation of the gut microbiota may play an important role in the obesity-associated inflammatory process. In the current study, we evaluated the effects of probiotics (Lactobacillus rhamnosus, L. acidophilus and Bifidobacterium bifidumi) on gut microbiota, changes in permeability, and insulin sensitivity and signaling in high-fat diet and control animals. More importantly, we investigated the effects of these gut modulations on hypothalamic control of food intake, and insulin and leptin signaling. Swiss mice were submitted to a high-fat diet (HFD) with probiotics or pair-feeding for 5 weeks. Metagenome analyses were performed on DNA samples from mouse feces. Blood was drawn to determine levels of glucose, insulin, LPS, cytokines and GLP-1. Liver, muscle, ileum and hypothalamus tissue proteins were analyzed by Western blotting and real-time polymerase chain reaction. In addition, liver and adipose tissues were analyzed using histology and immunohistochemistry. The HFD induced huge alterations in gut microbiota accompanied by increased intestinal permeability, LPS translocation and systemic low-grade inflammation, resulting in decreased glucose tolerance and hyperphagic behavior. All these obesity-related features were reversed by changes in the gut microbiota profile induced by probiotics. Probiotics also induced an improvement in hypothalamic insulin and leptin resistance. Our data demonstrate that the intestinal microbiome is a key modulator of inflammatory and metabolic pathways in both peripheral and central tissues. These findings shed light on probiotics as an important tool to prevent and treat patients with obesity and insulin resistance.


Subject(s)
Diabetes Mellitus, Type 2/prevention & control , Dysbiosis/prevention & control , Gastrointestinal Microbiome , Insulin Resistance , Intestinal Mucosa/physiopathology , Obesity/diet therapy , Probiotics/therapeutic use , Adipose Tissue, White/immunology , Adipose Tissue, White/metabolism , Adipose Tissue, White/pathology , Animals , Appetite Regulation , Bifidobacterium bifidum/classification , Bifidobacterium bifidum/growth & development , Bifidobacterium bifidum/immunology , Bifidobacterium bifidum/isolation & purification , Cell Membrane Permeability , Diabetes Mellitus, Type 2/etiology , Diabetes Mellitus, Type 2/immunology , Diabetes Mellitus, Type 2/microbiology , Diet, High-Fat/adverse effects , Dysbiosis/etiology , Dysbiosis/immunology , Dysbiosis/microbiology , Feces/microbiology , Gastrointestinal Microbiome/immunology , Glucose Clamp Technique , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Lactobacillus acidophilus/classification , Lactobacillus acidophilus/growth & development , Lactobacillus acidophilus/immunology , Lactobacillus acidophilus/isolation & purification , Lacticaseibacillus rhamnosus/classification , Lacticaseibacillus rhamnosus/growth & development , Lacticaseibacillus rhamnosus/immunology , Lacticaseibacillus rhamnosus/isolation & purification , Liver/immunology , Liver/metabolism , Liver/pathology , Male , Mice , Molecular Typing , Obesity/metabolism , Obesity/pathology , Obesity/physiopathology , Random Allocation
2.
Mol Metab ; 6(2): 206-218, 2017 02.
Article in English | MEDLINE | ID: mdl-28180062

ABSTRACT

OBJECTIVE: Recent data show that iNOS has an essential role in ER stress in obesity. However, whether iNOS is sufficient to account for obesity-induced ER stress and Unfolded Protein Response (UPR) has not yet been investigated. In the present study, we used iNOS knockout mice to investigate whether high-fat diet (HFD) can still induce residual ER stress-associated insulin resistance. METHODS: For this purpose, we used the intraperitoneal glucose tolerance test (GTT), euglycemic-hyperinsulinemic clamp, western blotting and qPCR in liver, muscle, and adipose tissue of iNOS KO and control mice on HFD. RESULTS: The results of the present study demonstrated that, in HFD fed mice, iNOS-induced alteration in insulin signaling is an essential mechanism of insulin resistance in muscle, suggesting that iNOS may represent an important target that could be blocked in order to improve insulin sensitivity in this tissue. However, in liver and adipose tissue, the insulin resistance induced by HFD was only partially dependent on iNOS, and, even in the presence of genetic or pharmacological blockade of iNOS, a clear ER stress associated with altered insulin signaling remained evident in these tissues. When this ER stress was blocked pharmacologically, insulin signaling was improved, and a complete recovery of glucose tolerance was achieved. CONCLUSIONS: Taken together, these results reinforce the tissue-specific regulation of insulin signaling in obesity, with iNOS being sufficient to account for insulin resistance in muscle, but in liver and adipose tissue ER stress and insulin resistance can be induced by both iNOS-dependent and iNOS-independent mechanisms.


Subject(s)
Endoplasmic Reticulum Stress/physiology , Nitric Oxide Synthase Type II/antagonists & inhibitors , Adipose Tissue/metabolism , Animals , Blood Glucose/metabolism , Diet, High-Fat , Dietary Fats/metabolism , Insulin/genetics , Insulin Resistance/physiology , Liver/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Nitric Oxide Synthase Type II/deficiency , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Obesity/genetics , Signal Transduction/physiology , Unfolded Protein Response
5.
Crit Care ; 16(4): R158, 2012 Aug 16.
Article in English | MEDLINE | ID: mdl-22897821

ABSTRACT

INTRODUCTION: Hyperglycemia and insulin resistance have been associated with a worse outcome in sepsis. Although tight glycemic control through insulin therapy has been shown to reduce morbidity and mortality rates, the effect of intensive insulin therapy in patients with severe sepsis is controversial because of the increased risk of serious adverse events related to hypoglycemia. Recently, knowledge about diacerhein, an anthraquinone drug with powerful antiinflammatory properties, revealed that this drug improves insulin sensitivity, mediated by the reversal of chronic subclinical inflammation. The aim of the present study was to evaluate whether the antiinflammatory effects of diacerhein after onset of sepsis-induced glycemic alterations is beneficial and whether the survival rate is prolonged in this situation. METHODS: Diffuse sepsis was induced by cecal ligation and puncture surgery (CLP) in male Wistar rats. Blood glucose and inflammatory cytokine levels were assessed 24 hours after CLP. The effect of diacerhein on survival of septic animals was investigated in parallel with insulin signaling and its modulators in liver, muscle, and adipose tissue. RESULTS: Here we demonstrated that diacerhein treatment improves survival during peritoneal-induced sepsis and inhibits sepsis-induced insulin resistance by improving insulin signaling via increased insulin-receptor substrate-1-associated phosphatidylinositol 3-kinase activity and Akt phosphorylation. Diacerhein also decreases the activation of endoplasmic reticulum stress signaling that involves upregulation of proinflammatory pathways, such as the I kappa B kinase and c-Jun NH2-terminal kinase, which blunts insulin-induced insulin signaling in liver, muscle, and adipose tissue. Additionally, our data show that this drug promoted downregulation of proinflammatory signaling cascades that culminate in transcription of immunomodulatory factors such interleukin (IL)-1ß, IL-6, and tumor necrosis factor-α. CONCLUSIONS: This study demonstrated that diacerhein treatment increases survival and attenuates the inflammatory response with a significant effect on insulin sensitivity. On the basis of efficacy and safety profile, diacerhein represents a novel antiinflammatory therapy for management of insulin resistance in sepsis and a potential approach for future clinical trials.


Subject(s)
Anthraquinones/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Inflammation/physiopathology , Sepsis/drug therapy , Sepsis/physiopathology , Adipose Tissue/metabolism , Animals , Blood Glucose/metabolism , Cytokines/blood , Insulin/metabolism , Insulin Resistance , Liver/metabolism , Male , Muscle, Skeletal/metabolism , Rats, Wistar , Signal Transduction
6.
PLoS One ; 5(12): e14232, 2010 Dec 06.
Article in English | MEDLINE | ID: mdl-21151908

ABSTRACT

The aim of the present study was to investigate whether the survival-improving effect of atorvastatin in sepsis is accompanied by a reduction in tissue activation of inflammatory pathways and, in parallel, an improvement in tissue insulin signaling in rats. Diffuse sepsis was induced by cecal ligation and puncture surgery (CLP) in male Wistar rats. Serum glucose and inflammatory cytokines levels were assessed 24 h after CLP. The effect of atorvastatin on survival of septic animals was investigated in parallel with insulin signaling and its modulators in liver, muscle and adipose tissue. Atorvastatin improves survival in septic rats and this improvement is accompanied by a marked improvement in insulin sensitivity, characterized by an increase in glucose disappearance rate during the insulin tolerance test. Sepsis induced an increase in the expression/activation of TLR4 and its downstream signaling JNK and IKK/NF-κB activation, and blunted insulin-induced insulin signaling in liver, muscle and adipose tissue; atorvastatin reversed all these alterations in parallel with a decrease in circulating levels of TNF-α and IL-6. In summary, this study demonstrates that atorvastatin treatment increased survival, with a significant effect upon insulin sensitivity, improving insulin signaling in peripheral tissues of rats during peritoneal-induced sepsis. The effect of atorvastatin on the suppression of the TLR-dependent inflammatory pathway may play a central role in regulation of insulin signaling and survival in sepsis insult.


Subject(s)
Heptanoic Acids/pharmacology , Insulin/metabolism , Pyrroles/pharmacology , Adipose Tissue/metabolism , Animals , Atorvastatin , Glucose/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Inflammation/drug therapy , Interleukin-6/metabolism , Liver/metabolism , Male , Muscles/metabolism , Rats , Rats, Wistar , Sepsis/drug therapy , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...