Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 14602, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37669946

ABSTRACT

This work proposes a system complexity metric and its application to Intensive Care Unit (ICU) system. The methodology for applying said complexity metric comprises: (i) parameters sensitivity indices calculation, (ii) mapping connections dynamics between system components, and (iii) system's complexity calculation. After simulating the ICU computer model and using the proposed methodology, we obtained results regarding: number of admissions, number of patients in the queue, length of stay, beds in use, ICU performance, and system complexity values (in regular or overloaded operation). As the number of patients in the queue increased, the ICU system complexity also increased, indicating a need for policies to promote system robustness.


Subject(s)
Beds , Hospitalization , Humans , Computer Simulation , Intensive Care Units , Policy
2.
Front Med (Lausanne) ; 10: 1305954, 2023.
Article in English | MEDLINE | ID: mdl-38259845

ABSTRACT

Background: Skin cancer is one of the most common forms worldwide, with a significant increase in incidence over the last few decades. Early and accurate detection of this type of cancer can result in better prognoses and less invasive treatments for patients. With advances in Artificial Intelligence (AI), tools have emerged that can facilitate diagnosis and classify dermatological images, complementing traditional clinical assessments and being applicable where there is a shortage of specialists. Its adoption requires analysis of efficacy, safety, and ethical considerations, as well as considering the genetic and ethnic diversity of patients. Objective: The systematic review aims to examine research on the detection, classification, and assessment of skin cancer images in clinical settings. Methods: We conducted a systematic literature search on PubMed, Scopus, Embase, and Web of Science, encompassing studies published until April 4th, 2023. Study selection, data extraction, and critical appraisal were carried out by two independent reviewers. Results were subsequently presented through a narrative synthesis. Results: Through the search, 760 studies were identified in four databases, from which only 18 studies were selected, focusing on developing, implementing, and validating systems to detect, diagnose, and classify skin cancer in clinical settings. This review covers descriptive analysis, data scenarios, data processing and techniques, study results and perspectives, and physician diversity, accessibility, and participation. Conclusion: The application of artificial intelligence in dermatology has the potential to revolutionize early detection of skin cancer. However, it is imperative to validate and collaborate with healthcare professionals to ensure its clinical effectiveness and safety.

SELECTION OF CITATIONS
SEARCH DETAIL
...