Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Nutr ; 154(4): 1141-1152, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38408730

ABSTRACT

BACKGROUND: Developmental iron deficiency (ID) is associated with long-term cognitive and affective behavioral impairments in humans. Preclinical studies have shown that developmental ID has short- and long-term effects on gene regulation. Prenatal choline supplementation partially rescues early-life ID-induced cognitive deficits in adult male rats. OBJECTIVES: To identify acute and long-term changes in biological processes regulated by developmental ID and modifiable by choline. METHODS: This study compares the hippocampal transcriptomes of postnatal day (P) 15 iron-deficient (acute) and P65 formerly ID (persistent) rats with or without prenatal choline treatment. Pregnant rats were fed an ID (4 mg/kg Fe) or iron-sufficient (IS) (200 mg/kg Fe) diet from gestational day (G) 2 to P7 with or without choline supplementation (5 g/kg choline) from G11 to G18. Hippocampi were collected from P15 or P65 offspring and analyzed for gene expression by RNA sequencing. RESULTS: Developmental ID-induced changes suggested modified activity of oxidative phosphorylation and fatty acid metabolism. Prenatal choline supplementation induced robust changes in gene expression, particularly in iron-deficient animals, where it partially mitigated the early-life ID-dysregulated genes. Choline supplementation also altered the hippocampal transcriptome in the IS rats, with indications for both beneficial and adverse effects. CONCLUSIONS: This study provided global assessments of gene expression regulated by iron and choline. Our new findings highlight genes responding to iron or choline treatments, including a potentially novel choline-regulated transporter (IPO7), with shared effects on neuroinflammation in the male rat hippocampus.


Subject(s)
Iron Deficiencies , Prenatal Exposure Delayed Effects , Pregnancy , Humans , Female , Rats , Animals , Male , Iron/metabolism , Transcriptome , Choline , Animals, Newborn , Rats, Sprague-Dawley , Vitamins/pharmacology , Hippocampus/metabolism
2.
Nutrients ; 15(6)2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36986048

ABSTRACT

BACKGROUND: Fetal-neonatal iron deficiency (ID) causes long-term neurocognitive and affective dysfunctions. Clinical and preclinical studies have shown that early-life ID produces sex-specific effects. However, little is known about the molecular mechanisms underlying these early-life ID-induced sex-specific effects on neural gene regulation. OBJECTIVE: To illustrate sex-specific transcriptome alterations in adult rat hippocampus induced by fetal-neonatal ID and prenatal choline treatment. METHODS: Pregnant rats were fed an iron-deficient (4 mg/kg Fe) or iron-sufficient (200 mg/kg Fe) diet from gestational day (G) 2 to postnatal day (P) 7 with or without choline supplementation (5 g/kg choline) from G11-18. Hippocampi were collected from P65 offspring of both sexes and analyzed for changes in gene expression. RESULTS: Both early-life ID and choline treatment induced transcriptional changes in adult female and male rat hippocampi. Both sexes showed ID-induced alterations in gene networks leading to enhanced neuroinflammation. In females, ID-induced changes indicated enhanced activity of oxidative phosphorylation and fatty acid metabolism, which were contrary to the ID effects in males. Prenatal choline supplementation induced the most robust changes in gene expression, particularly in iron-deficient animals where it partially rescued ID-induced dysregulation. Choline supplementation also altered hippocampal transcriptome in iron-sufficient rats with indications for both beneficial and adverse effects. CONCLUSIONS: This study provided unbiased global assessments of gene expression regulated by iron and choline in a sex-specific manner, with greater effects in female than male rats. Our new findings highlight potential sex-specific gene networks regulated by iron and choline for further investigation.


Subject(s)
Iron Deficiencies , Prenatal Exposure Delayed Effects , Pregnancy , Humans , Animals , Rats , Male , Female , Choline/pharmacology , Choline/metabolism , Transcriptome , Animals, Newborn , Rats, Sprague-Dawley , Iron/metabolism , Vitamins/pharmacology , Hippocampus/metabolism , Prenatal Exposure Delayed Effects/metabolism
3.
J Appl Microbiol ; 132(3): 2004-2019, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34599635

ABSTRACT

AIMS: In this report, we present Scenedesmus glucoliberatum PABB004, a microalga that was isolated from an association with Paramecium bursaria with the potential for application in fermentative processes and co-culture schemes due to its advantageous high sugar secretion phenotype. METHODS AND RESULTS: We sequenced, assembled and annotated the draft genome and transcriptome for this newly reported strain. The nuclear genome has an exceptionally high GC content of 78%. Our results revealed significant sugar accumulation over a range from 6.2 to 7.8 pH units. The predicted proteome was compared with other green algae that show different sugar secretion phenotypes aiming to help uncover their common features for simple sugar secretion and those unique to S. glucoliberatum PABB004. CONCLUSIONS: The evolutionary history of this organism, inferred from its genomic traits, expands our current understanding of algal mutualistic relationships involving photosynthate exchanges. S. glucoliberatum PABB004 secreted ready-to-use fermentable sugars (glucose and maltose) directly to the extracellular media achieving concentrations greater than 2.7 g/L of free glucose and 1.2 g/L of maltose in batch cultures. SIGNIFICANCE AND IMPACT OF THE STUDY: A draft genome is provided for a new member of an important class of green algae. Scenedesmus glucoliberatum PABB004 secretes high levels of simple sugars over a broad pH range.


Subject(s)
Scenedesmus , Fermentation , Genomics , Sugars , Symbiosis
4.
Appl Biochem Biotechnol ; 191(4): 1369-1383, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32100231

ABSTRACT

We report herein the use of nanofibrillated cellulose (NFC) for development of enzyme assemblies in an oriented manner for biotransformation with in situ cofactor regeneration. This is achieved by developing fusion protein enzymes with cellulose-specific binding domains. Specifically, lactate dehydrogenase and NADH oxidase were fused with a cellulose binding domain, which enabled both enzyme recovery and assembling in essentially one single step by using NFC. Results showed that the binding capacity of the enzymes was as high as 0.9 µmol-enzyme/g-NFC. Compared to native parent free enzymes, NFC-enzyme assemblies improved the catalytic efficiency of the coupled reaction system by over 100%. The lifetime of enzymes was also improved by as high as 27 folds. The work demonstrates promising potential of using biocompatible and environmentally benign bio-based nanomaterials for construction of efficient catalysts for intensified bioprocessing and biotransformation applications.


Subject(s)
Cellulose/chemistry , L-Lactate Dehydrogenase/metabolism , Multienzyme Complexes/metabolism , NADH, NADPH Oxidoreductases/metabolism , Biotransformation , Clostridium thermocellum/enzymology , Industrial Microbiology , Lacticaseibacillus casei/enzymology , Nanofibers/chemistry , Nanostructures/chemistry , Protein Domains , Recombinant Proteins/metabolism , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...