Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 147
Filter
1.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731916

ABSTRACT

Herein, we report a series of 1,3-diarylpyrazoles that are analogues of compound 26/HIT 8. We previously identified this molecule as a 'hit' during a high-throughput screening campaign for autophagy inducers. A variety of synthetic strategies were utilized to modify the 1,3-diarylpyrazole core at its 1-, 3-, and 4-position. Compounds were assessed in vitro to identify their cytotoxicity properties. Of note, several compounds in the series displayed relevant cytotoxicity, which warrants scrutiny while interpreting biological activities that have been reported for structurally related molecules. In addition, antiparasitic activities were recorded against a range of human-infective protozoa, including Trypanosoma cruzi, T. brucei rhodesiense, and Leishmania infantum. The most interesting compounds displayed low micromolar whole-cell potencies against individual or several parasitic species, while lacking cytotoxicity against human cells.


Subject(s)
Pyrazoles , Trypanosoma cruzi , Pyrazoles/pharmacology , Pyrazoles/chemistry , Pyrazoles/chemical synthesis , Humans , Trypanosoma cruzi/drug effects , Antiparasitic Agents/pharmacology , Antiparasitic Agents/chemical synthesis , Antiparasitic Agents/chemistry , Drug Design , Leishmania infantum/drug effects , Structure-Activity Relationship , Trypanosoma brucei rhodesiense/drug effects , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/chemistry
2.
ACS Infect Dis ; 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733389

ABSTRACT

The bioluminescent Leishmania infantum BALB/c mouse model was used to evaluate the parasiticidal drug action kinetics of the reference drugs miltefosine, paromomycin, sodium stibogluconate, and liposomal amphotericin B. Infected mice were treated for 5 days starting from 7 days post-infection, and parasite burdens were monitored over time via bioluminescence imaging (BLI). Using nonlinear regression analyses of the BLI signal, the parasite elimination half-life (t1/2) in the liver, bone marrow, and whole body was determined and compared for the different treatment regimens. Significant differences in parasiticidal kinetics were recorded. A single intravenous dose of 0.5 mg/kg liposomal amphotericin B was the fastest acting with a t1/2 of less than 1 day. Intraperitoneal injection of paromomycin at 320 mg/kg for 5 days proved to be the slowest with a t1/2 of about 5 days in the liver and 16 days in the bone marrow. To conclude, evaluation of the cidal kinetics of the different antileishmanial reference drugs revealed striking differences in their parasite elimination half-lives. This BLI approach also enables an in-depth pharmacodynamic comparison between novel drug leads and may constitute an essential tool for the design of potential drug combinations.

3.
ACS Omega ; 9(20): 22360-22370, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38799347

ABSTRACT

Chagas disease (CD) is a parasitic neglected tropical disease (NTD) caused by the protozoan Trypanosoma cruzi that affects 6 million people worldwide, often resulting in financial burden, morbidity, and mortality in endemic regions. Given a lack of highly efficient and safe treatments, new, affordable, and fit-for-purpose drugs for CD are urgently needed. In this work, we present a hit-to-lead campaign for novel cyanopyridine analogues as antichagasic agents. In a phenotypic screening against intracellular T. cruzi, hits 1 and 2 were identified and displayed promising potency combined with balanced physicochemical properties. As part of the Lead Optimization Latin America consortium, a set of 40 compounds was designed, synthesized, and tested against T. cruzi intracellular amastigotes and relevant human cell lines. The structural modifications were focused on three positions: cyanopyridine core, linker, and right-hand side. The ADME properties of selected compounds, lipophilicity, kinetic solubility, permeability, and liver microsomal stability, were evaluated. Compounds 1-9 displayed good potency (EC50T. cruzi amastigote <1 µM), and most compounds did not present significant cytotoxicity (CC50 MRC-5 = 32-64 µM). Despite the good balance between potency and selectivity, the antiparasitic activity of the series appeared to be driven by lipophilicity, making the progression of the series unfeasible due to poor ADME properties and potential promiscuity issues.

4.
J Infect Dis ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38804698

ABSTRACT

Accurate detection of viable Leishmania parasites is critical for evaluating visceral leishmaniasis (VL) treatment response at an early timepoint. We compared the decay of kinetoplast DNA (kDNA) and spliced-leader RNA (SL-RNA) in vitro, in vivo, and in a VL patient cohort. An optimized combination of blood preservation and nucleic acid extraction improved efficiency for both targets. SL-RNA degraded more rapidly during treatment than kDNA, and correlated better with microscopic examination. SL-RNA quantitative polymerase chain reaction emerges as a superior method for dynamic monitoring of viable Leishmania parasites. It enables individualized treatment monitoring for improved prognoses and has potential as an early surrogate endpoint in clinical trials.

5.
ChemMedChem ; : e202400220, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38687962

ABSTRACT

Three types of modifications of antileishmanial pyrazole lead compounds 7 and 8 were conducted to expand the relationships between structural features and antileishmanial/antitrypanosomal activity: (1) the pyrazole core was retained or replaced by a 1,2,4-triazole ring; (2) various aryl moieties including 2-fluorophenyl, pyridin-3-yl and pyrazin-2-yl rings were attached at 3-position of the core azole; (3) either arylmethylamino or ureido substituents were introduced at 5-position of the azole core. The synthesis followed established routes starting with esters 9 or 15 and anhydride 21. The synthesized 3-arylpyrazoles and 3-aryl-1,2,4-triazoles showed only very low antileishmanial activity. The 2-fluorophenyl-substituted pyrazole 18c revealed the highest antileishmanial activity of this series of compounds, but its IC50 value (20 µM) still indicates low activity. However, low micromolar antitrypanosomal activity was detected for the pyridin-3-yl-substituted pyrazoles 12b (IC50 = 4.7 µM) and 14a (IC50 = 2.1 µM). Their IC50 values are comparable with the IC50 values of the reference compounds benznidazole and nifurtimox. Whereas only low unspecific cytotoxicity at the primary peritoneal mouse macrophages (PMM) was detected, considerable cytotoxicity at MRC-5 human fibroblast cells was found for both pyrazoles 12b an 14a. The activity of pyrazole 12b against T. cruzi is 4-fold higher than its unspecific MRC-5 cytotoxicity.

6.
PLoS Pathog ; 20(4): e1012181, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38656959

ABSTRACT

Addressing the challenges of quiescence and post-treatment relapse is of utmost importance in the microbiology field. This study shows that Leishmania infantum and L. donovani parasites rapidly enter into quiescence after an estimated 2-3 divisions in both human and mouse bone marrow stem cells. Interestingly, this behavior is not observed in macrophages, which are the primary host cells of the Leishmania parasite. Transcriptional comparison of the quiescent and non-quiescent metabolic states confirmed the overall decrease of gene expression as a hallmark of quiescence. Quiescent amastigotes display a reduced size and signs of a rapid evolutionary adaptation response with genetic alterations. Our study provides further evidence that this quiescent state significantly enhances resistance to treatment. Moreover, transitioning through quiescence is highly compatible with sand fly transmission and increases the potential of parasites to infect cells. Collectively, this work identified stem cells in the bone marrow as a niche where Leishmania quiescence occurs, with important implications for antiparasitic treatment and acquisition of virulence traits.


Subject(s)
Hematopoietic Stem Cells , Leishmania infantum , Animals , Hematopoietic Stem Cells/parasitology , Hematopoietic Stem Cells/metabolism , Mice , Humans , Leishmania donovani/physiology , Macrophages/parasitology , Macrophages/metabolism , Leishmaniasis, Visceral/parasitology , Mice, Inbred C57BL , Mice, Inbred BALB C
7.
Parasitology ; 151(5): 506-513, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38533610

ABSTRACT

Leishmania is a trypanosomatid parasite that causes skin lesions in its cutaneous form. Current therapies rely on old and expensive drugs, against which the parasites have acquired considerable resistance. Trypanosomatids are unable to synthesize purines relying on salvaging from the host, and nucleoside analogues have emerged as attractive antiparasitic drug candidates. 4-Methyl-7-ß-D-ribofuranosyl-7H-pyrrolo[2,3-d]pyrimidine (CL5564), an analogue of tubercidin in which the amine has been replaced by a methyl group, demonstrates activity against Trypanosoma cruzi and Leishmania infantum. Herein, we investigated its in vitro and in vivo activity against L. amazonensis. CL5564 was 6.5-fold (P = 0.0002) more potent than milteforan™ (ML) against intracellular forms in peritoneal mouse macrophages, and highly selective, while combination with ML gave an additive effect. These results stimulated us to study the activity of CL5564 in mouse model of cutaneous Leishmania infection. BALB/c female and male mice infected by L. amazonensis treated with CL5564 (10 mg kg−1, intralesional route for five days) presented a >93% reduction of paw lesion size likely ML given orally at 40 mg kg−1, while the combination (10 + 40 mg kg−1 of CL5564 and ML, respectively) caused >96% reduction. The qPCR confirmed the suppression of parasite load, but only the combination approach reached 66% of parasitological cure. These results support additional studies with nucleoside derivatives.


Subject(s)
Disease Models, Animal , Leishmania mexicana , Leishmaniasis, Cutaneous , Mice, Inbred BALB C , Animals , Leishmaniasis, Cutaneous/drug therapy , Leishmaniasis, Cutaneous/parasitology , Mice , Female , Male , Leishmania mexicana/drug effects , Tubercidin/pharmacology , Tubercidin/analogs & derivatives , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/therapeutic use , Antiprotozoal Agents/administration & dosage , Macrophages, Peritoneal/parasitology , Macrophages, Peritoneal/drug effects , Leishmania/drug effects
8.
ACS Infect Dis ; 10(4): 1026-1033, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38533709

ABSTRACT

Parasitic vector-borne diseases (VBDs) represent nearly 20% of the global burden of infectious diseases. Moreover, the spread of VBDs is enhanced by global travel, urbanization, and climate change. Treatment of VBDs faces challenges due to limitations of existing drugs, as the potential for side effects in nontarget species raises significant environmental concerns. Consequently, considering environmental risks early in drug development processes is critically important. Here, we examine the environmental risk assessment process for veterinary medicinal products in the European Union and identify major gaps in the ecotoxicity data of these drugs. By highlighting the scarcity of ecotoxicological data for commonly used antiparasitic drugs, we stress the urgent need for considering the One Health concept. We advocate for employing predictive tools and nonanimal methodologies such as New Approach Methodologies at early stages of antiparasitic drug research and development. Furthermore, adopting progressive approaches to mitigate ecological risks requires the integration of nonstandard tests that account for real-world complexities and use environmentally relevant exposure scenarios. Such a strategy is vital for a sustainable drug development process as it adheres to the principles of One Health, ultimately contributing to a healthier and more sustainable world.


Subject(s)
Communicable Diseases , Vector Borne Diseases , Animals , Disease Vectors , Communicable Diseases/drug therapy , Research , Drug Development
9.
Arch Pharm (Weinheim) ; : e2300319, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38396284

ABSTRACT

Several quinoline derivatives incorporating arylnitro and aminochalcone moieties were synthesized and evaluated in vitro against a broad panel of trypanosomatid protozoan parasites responsible for sleeping sickness (Trypanosoma brucei rhodesiense), nagana (Trypanosoma brucei brucei), Chagas disease (Trypanosoma cruzi), and leishmaniasis (Leishmania infantum). Several of the compounds demonstrated significant antiprotozoal activity. Specifically, compounds 2c, 2d, and 4i displayed submicromolar activity against T. b. rhodesiense with half-maximal effective concentration (EC50 ) values of 0.68, 0.8, and 0.19 µM, respectively, and with a high selectivity relative to human lung fibroblasts and mouse primary macrophages (∼100-fold). Compounds 2d and 4i also showed considerable activity against T. b. brucei with EC50 values of 1.4 and 0.4 µM, respectively.

10.
J Med Chem ; 67(4): 2849-2863, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38330051

ABSTRACT

Human African trypanosomiasis (HAT) still faces few therapeutic options and emerging drug resistance, stressing an urgency for novel antitrypanosomal drug discovery. Here, we describe lead optimization efforts aiming at improving antitrypanosomal efficacy and better physicochemical properties based on our previously reported optimized hit NPD-2975 (pIC50 7.2). Systematic modification of the 5-phenylpyrazolopyrimidinone NPD-2975 led to the discovery of a R4-substituted analogue 31c (NPD-3519), showing higher in vitro potency (pIC50 7.8) against Trypanosoma brucei and significantly better metabolic stability. Further, in vivo pharmacokinetic evaluation of 31c and experiments in an acute T. brucei mouse model confirmed improved oral bioavailability and antitrypanosomal efficacy at 50 mg/kg with no apparent toxicity. With good physicochemical properties, low toxicity, improved pharmacokinetic features, and in vivo efficacy, 31c may serve as a promising candidate for future drug development for HAT.


Subject(s)
Antiprotozoal Agents , Trypanocidal Agents , Trypanosoma brucei brucei , Trypanosomiasis, African , Animals , Mice , Humans , Trypanocidal Agents/pharmacology , Trypanocidal Agents/therapeutic use , Trypanosomiasis, African/drug therapy , Antiprotozoal Agents/therapeutic use , Drug Development
11.
Nat Commun ; 15(1): 1779, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38413606

ABSTRACT

Human African trypanosomiasis or sleeping sickness, caused by the protozoan parasite Trypanosoma brucei, is characterized by the manipulation of the host's immune response to ensure parasite invasion and persistence. Uncovering key molecules that support parasite establishment is a prerequisite to interfere with this process. We identified Q586B2 as a T. brucei protein that induces IL-10 in myeloid cells, which promotes parasite infection invasiveness. Q586B2 is expressed during all T. brucei life stages and is conserved in all Trypanosomatidae. Deleting the Q586B2-encoding Tb927.6.4140 gene in T. brucei results in a decreased peak parasitemia and prolonged survival, without affecting parasite fitness in vitro, yet promoting short stumpy differentiation in vivo. Accordingly, neutralization of Q586B2 with newly generated nanobodies could hamper myeloid-derived IL-10 production and reduce parasitemia. In addition, immunization with Q586B2 delays mortality upon a challenge with various trypanosomes, including Trypanosoma cruzi. Collectively, we uncovered a conserved protein playing an important regulatory role in Trypanosomatid infection establishment.


Subject(s)
Trypanosoma brucei brucei , Trypanosoma cruzi , Trypanosomiasis, African , Animals , Humans , Trypanosoma brucei brucei/genetics , Interleukin-10/genetics , Virulence Factors , Parasitemia/parasitology , Trypanosomiasis, African/parasitology
12.
ACS Med Chem Lett ; 15(1): 81-86, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38229744

ABSTRACT

Various purine-based nucleoside analogues have demonstrated unexpected affinity for nonpurinergic G protein-coupled receptors (GPCRs), such as opioid and serotonin receptors. In this work, we synthesized a small library of new 7-deazaadenosine and pyrazolo[3,4-d]pyrimidine riboside analogues, featuring dual C7 and N6 modifications and assessed their affinity for various GPCRs. During the course of the synthesis of 7-ethynyl pyrazolo[3,4-d]pyrimidine ribosides, we observed the formation of an unprecedented tricyclic nucleobase, formed via a 6-endo-dig ring closure. The synthesis of this tricyclic nucleoside was optimized, and the substrate scope for such cyclization was further explored because it might avail further exploration in the nucleoside field. From displacement experiments on a panel of GPCRs and transporters, combining C7 and N6 modifications afforded noncytotoxic nucleosides with micromolar and submicromolar affinity for different GPCRs, such as the 5-hydroxytryptamine (5-HT)2B, κ-opioid (KOR), and σ1/2 receptor. These results corroborate that the novel nucleoside analogues reported here are potentially useful starting points for the further development of modulators of GPCRs and transmembrane proteins.

13.
ChemMedChem ; 19(8): e202400028, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38289147

ABSTRACT

N-Pyrazolylcarboxamides and N-pyrazolylureas represent promising lead compounds for the development of novel antileishmanial drugs. Herein, we report the late-stage diversification of 3-bromopyrazoles 10 A/B and 14 A by Pd-catalyzed Sonogashira and Suzuki-Miyaura cross coupling reactions. The electron-withdrawing properties of the cyano moiety in 4-position of the pyrazole ring limited the acylation of the primary amino moiety in 5-position. A large set of pyrazoles bearing diverse aryl and alkynyl substituents in 3-position was prepared and the antileishmanial and antitrypanosomal activity was recorded. The urea 38 lacking the electron withdrawing cyano moiety in 4-position and containing the large 4-benzylpiperidinoo moiety exhibited a modest antileishmanial (IC50=19 µM) and antitrypanosomal activity (IC50=7.9 µM)). However, its considerable toxicity against the PMM and MRC-5 cells indicates low selectivity, i. e. a small gap between the desired antiparasitic activity and undesired cytotoxicity of <2- to 4-fold.


Subject(s)
Antiprotozoal Agents , Antiprotozoal Agents/pharmacology , Antiparasitic Agents , Pyrazoles/pharmacology
14.
Chem Biol Drug Des ; 103(1): e14400, 2024 01.
Article in English | MEDLINE | ID: mdl-37994272

ABSTRACT

A library of imidazo[1,2-a]pyridine-appended chalcones were synthesized and characterized using 1 H NMR, 13 C NMR and HRMS. The synthesized analogues were screened for their antikinetoplastid activity against Trypanosoma cruzi, Trypanosoma brucei brucei, Trypanosoma brucei rhodesiense and Leishmania infantum. The analogues were also tested for their cytotoxicity activity against human lung fibroblasts and primary mouse macrophages. Among all screened derivatives, 7f was found to be the most active against T. cruzi and T. b. brucei exhibiting IC50 values of 8.5 and 1.35 µM, respectively. Against T. b. rhodesiense, 7e was found to be the most active with an IC50 value of 1.13 µM. All synthesized active analogues were found to be non-cytotoxic against MRC-5 and PMM with selectivity indices of up to more than 50.


Subject(s)
Antiprotozoal Agents , Chagas Disease , Chalcone , Chalcones , Trypanocidal Agents , Trypanosoma brucei brucei , Trypanosoma cruzi , Mice , Animals , Humans , Antiprotozoal Agents/chemistry , Chalcones/pharmacology , Chalcones/therapeutic use , Chagas Disease/drug therapy , Pyridines/therapeutic use , Trypanocidal Agents/chemistry
15.
Sci Transl Med ; 15(726): eadh9902, 2023 12 13.
Article in English | MEDLINE | ID: mdl-38091406

ABSTRACT

New drugs for visceral leishmaniasis that are safe, low cost, and adapted to the field are urgently required. Despite concerted efforts over the last several years, the number of new chemical entities that are suitable for clinical development for the treatment of Leishmania remains low. Here, we describe the discovery and preclinical development of DNDI-6174, an inhibitor of Leishmania cytochrome bc1 complex activity that originated from a phenotypically identified pyrrolopyrimidine series. This compound fulfills all target candidate profile criteria required for progression into preclinical development. In addition to good metabolic stability and pharmacokinetic properties, DNDI-6174 demonstrates potent in vitro activity against a variety of Leishmania species and can reduce parasite burden in animal models of infection, with the potential to approach sterile cure. No major flags were identified in preliminary safety studies, including an exploratory 14-day toxicology study in the rat. DNDI-6174 is a cytochrome bc1 complex inhibitor with acceptable development properties to enter preclinical development for visceral leishmaniasis.


Subject(s)
Leishmaniasis, Visceral , Leishmaniasis , Rats , Animals , Leishmaniasis, Visceral/drug therapy , Leishmaniasis, Visceral/parasitology , Disease Models, Animal
16.
Parasit Vectors ; 16(1): 404, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37932813

ABSTRACT

BACKGROUND: Visceral leishmaniasis (VL), a life-threatening neglected tropical disease, is targeted for elimination from Nepal by the year 2026. The national VL elimination program is still confronted with many challenges including the increasingly widespread distribution of the disease over the country, local resurgence and the questionable efficacy of the key vector control activities. In this study, we assessed the status and risk of Leishmania donovani transmission based on entomological indicators including seasonality, natural Leishmania infection rate and feeding behavior of vector sand flies, Phlebotomus argentipes, in three districts that had received disease control interventions in the past several years in the context of the disease elimination effort. METHODS: We selected two epidemiologically contrasting settings in each survey district, one village with and one without reported VL cases in recent years. Adult sand flies were collected using CDC light traps and mouth aspirators in each village for 12 consecutive months from July 2017 to June 2018. Leishmania infection was assessed in gravid sand flies targeting the small-subunit ribosomal RNA gene of the parasite (SSU-rRNA) and further sequenced for species identification. A segment (~ 350 bp) of the vertebrate cytochrome b (cytb) gene was amplified from blood-fed P. argentipes from dwellings shared by both humans and cattle and sequenced to identify the preferred host. RESULTS: Vector abundance varied among districts and village types and peaks were observed in June, July and September to November. The estimated Leishmania infection rate in vector sand flies was 2.2% (1.1%-3.7% at 95% credible interval) and 0.6% (0.2%-1.3% at 95% credible interval) in VL and non-VL villages respectively. The common source of blood meal was humans in both VL (52.7%) and non-VL (74.2%) villages followed by cattle. CONCLUSIONS: Our findings highlight the risk of ongoing L. donovani transmission not only in villages with VL cases but also in villages not reporting the presence of the disease over the past several years within the districts having disease elimination efforts, emphasize the remaining threats of VL re-emergence and inform the national program for critical evaluation of disease elimination strategies in Nepal.


Subject(s)
Leishmania donovani , Leishmaniasis, Visceral , Phlebotomus , Psychodidae , Adult , Humans , Animals , Cattle , Leishmania donovani/genetics , Nepal , Leishmaniasis, Visceral/parasitology , Phlebotomus/parasitology
17.
J Med Chem ; 66(18): 12717-12738, 2023 09 28.
Article in English | MEDLINE | ID: mdl-37721854

ABSTRACT

Dipeptidyl peptidase 9 (DPP9) is a proline-selective serine protease that plays a key role in NLRP1- and CARD8-mediated inflammatory cell death (pyroptosis). No selective inhibitors have hitherto been reported for the enzyme: all published molecules have grossly comparable affinities for DPP8 and 9 because of the highly similar architecture of these enzymes' active sites. Selective DPP9 inhibitors would be highly instrumental to address unanswered research questions on the enzyme's role in pyroptosis, and they could also be investigated as therapeutics for acute myeloid leukemias. Compounds presented in this manuscript (42 and 47) combine low nanomolar DPP9 affinities with unprecedented DPP9-to-DPP8 selectivity indices up to 175 and selectivity indices >1000 toward all other proline-selective proteases. To rationalize experimentally obtained data, a molecular dynamics study was performed. We also provide in vivo pharmacokinetics data for compound 42.


Subject(s)
Dipeptidyl-Peptidases and Tripeptidyl-Peptidases , Vildagliptin , Dipeptidyl Peptidase 4 , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/antagonists & inhibitors , Proline , Protease Inhibitors , Serine Endopeptidases , Vildagliptin/pharmacology
18.
Molecules ; 28(13)2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37446602

ABSTRACT

Malaria continues to pose a significant health threat, causing thousands of deaths each year. The limited availability of vaccines and medications, combined with the emergence of drug resistance, further complicates the fight against this disease. In this study, we aimed to enhance the antimalarial potency of the previously reported hit compound BIPPO (pIC50 5.9). Through systematic modification of pyrazolopyrimidinone analogs, we discovered the promising analog 30 (NPD-3547), which exhibited approximately one log unit higher in vitro potency (pIC50 6.8) against Plasmodium falciparum. Furthermore, we identified several other BIPPO analogs (23, 28, 29 and 47a) with potent antimalarial activity (pIC50 > 6.0) and favorable metabolic stability in mouse liver microsomes. These compounds can serve as new tools for further optimization towards the development of potential candidates for antimalarial studies.


Subject(s)
Antimalarials , Folic Acid Antagonists , Malaria , Mice , Animals , Antimalarials/chemistry , Malaria/drug therapy , Plasmodium falciparum , Microsomes, Liver , Drug Resistance , Folic Acid Antagonists/therapeutic use
19.
ACS Infect Dis ; 9(8): 1470-1487, 2023 08 11.
Article in English | MEDLINE | ID: mdl-37417544

ABSTRACT

Leishmaniasis is a collection of diseases caused by more than 20 Leishmania parasite species that manifest as either visceral, cutaneous, or mucocutaneous leishmaniasis. Despite the significant mortality and morbidity associated with leishmaniasis, it remains a neglected tropical disease. Existing treatments have variable efficacy, significant toxicity, rising resistance, and limited oral bioavailability, which necessitates the development of novel and affordable therapeutics. Here, we report on the continued optimization of a series of imidazopyridines for visceral leishmaniasis and a scaffold hop to a series of substituted 2-(pyridin-2-yl)-6,7-dihydro-5H-pyrrolo[1,2-a]imidazoles with improved absorption, distribution, metabolism, and elimination properties.


Subject(s)
Leishmania , Leishmaniasis, Visceral , Leishmaniasis , Humans , Leishmaniasis, Visceral/drug therapy , Neglected Diseases , Imidazoles/pharmacology
20.
J Med Chem ; 66(15): 10252-10264, 2023 08 10.
Article in English | MEDLINE | ID: mdl-37471520

ABSTRACT

Human African Trypanosomiasis (HAT), caused by Trypanosoma brucei, is one of the neglected tropical diseases with a continuing need for new medication. We here describe the discovery of 5-phenylpyrazolopyrimidinone analogs as a novel series of phenotypic antitrypanosomal agents. The most potent compound, 30 (NPD-2975), has an in vitro IC50 of 70 nM against T. b. brucei with no apparent toxicity against human MRC-5 lung fibroblasts. Showing good physicochemical properties, low toxicity potential, acceptable metabolic stability, and other pharmacokinetic features, 30 was further evaluated in an acute mouse model of T. b. brucei infection. After oral dosing at 50 mg/kg twice per day for five consecutive days, all infected mice were cured. Given its good drug-like properties and high in vivo antitrypanosomal potential, the 5-phenylpyrazolopyrimidinone analog 30 represents a promising lead for future drug development to treat HAT.


Subject(s)
Trypanocidal Agents , Trypanosoma brucei brucei , Trypanosomiasis, African , Mice , Humans , Animals , Trypanocidal Agents/pharmacology , Trypanocidal Agents/therapeutic use , Trypanosomiasis, African/drug therapy , Drug Discovery , Drug Development
SELECTION OF CITATIONS
SEARCH DETAIL
...