Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol ; 115(1): 51-60, 1997 Sep.
Article in English | MEDLINE | ID: mdl-12223791

ABSTRACT

The ability to maintain the cytoplasmic Ca2+ concentration ([Ca2+]cyt) at homeostatic levels has been examined during leaf senescence in detached parsley (Petroselinum crispum) leaves. Fluorescence ratiometric imaging of mesophyll cells isolated from parsley leaves at various senescence stages and loaded with the Ca2+ indicator fura-2 has revealed a distinct elevation of [Ca2+]cyt, which was positively correlated with the progress of leaf senescence. This initial increase of [Ca2+]cyt, which was first observed in cells isolated from 3-d-senescent leaves, occurred 1 d before or in parallel with changes in two established senescence parameters, chlorophyll loss and lipid peroxidation. However, the [Ca2+]cyt elevation followed by 2 d the initial increase in the senescence-associated proteolysis. Whereas the [Ca2+]cyt of nonsenescent cells remained at the basal level, the elevated [Ca2+]cyt of the senescent cells was a long-lasting effect. Experimental retardation of senescence processes, achieved by pretreatment of detached leaves with the cytokinin benzyladenine, resulted in maintenance of homeostatic levels of [Ca2+]cyt in cells isolated from 3-d-senescent leaves. These observations demonstrate for the first time to our knowledge a correlation between elevated [Ca2+]cyt and the process of senescence in parsley leaves. Such senescence-associated elevation of [Ca2+]cyt, which presumably results from a loss of the cell's capability to extrude Ca2+, may serve as a signal inducing subsequent deteriorative processes.

2.
Dev Biol ; 174(1): 160-73, 1996 Feb 25.
Article in English | MEDLINE | ID: mdl-8626016

ABSTRACT

Studies have been conducted on the dynamics of Ca2+ entry in pollen tubes using ratiometric ion imaging to measure the intracellular gradient and an ion selective vibrating electrode to detect the extracellular influx. A steep tip-focused gradient occurs in all species examined, including Lilium longiflorum, Nicotiana sylvestris, and Tradescantia virginiana. Anlaysis of Lilium pollen tubes loaded with dextran conjugated fura-2 reveals that the gradient derives from Ca2+ entry that is restricted to a small area of plasma membrane at the extreme apex of the tube dome. Since the apical membrane is continually swept to the flanks during tube elongation, either Ca2+ channels are specifically retained at the extreme apex or, as seems more likely, the Ca2+ channels which were active at the tip rapidly inactivate, as new ones are inserted during vesicle fusion. Ratiometric imaging further indicates that the high point of the gradient fluctuates in magnitude from 0.75 to above 3 microM, during measuring intervals of 60 sec, with the elevated points being correlated with an increased rate of tube growth. Independent analysis of the growth at 2- to 3-sec intervals reveals that the rates can fluctuate more than threefold; tubes longer than 700 mu m exhibit oscillations with a period of 23 sec, while tubes shorter than 700 mu m display erratic fluctuations. Inhibition of pollen tube growth caused by mild temperature shock or caffeine (1.5 to 3.0 mM) is correlated with the dissipation of the tip-focused gradient and the Ca2+ influx. Recovery from both treatments is denoted by a global swelling of the pollen tube tip, concomitant with a high transient entry of Ca2+ in the tip. The location of the highest Ca2+ domain within the tip region defines the point from which normal cylindrical elongation will proceed.


Subject(s)
Calcium/physiology , Plant Physiological Phenomena , Pollen , Caffeine/pharmacology , Fertilization , Membrane Fusion , Temperature
3.
Eur J Cell Biol ; 67(4): 363-71, 1995 Aug.
Article in English | MEDLINE | ID: mdl-8521876

ABSTRACT

Intracellular free Ca2+ ([Ca2+]) has been measured in growing unicells of two species of the green alga, Micrasterias, which have been injected with the indicator dye fura-2-dextran. Ratiometric imaging of Micrasterias denticulata yields levels of 170 to 200 nM [Ca2+] but fails to reveal a significant [Ca2+] gradient associated with the tips of growing lobes, or in any other region of the cell. In Micrasterias muricata slight elevations from a basal value of 350 to 500 nM have been observed, but these might be due to a general inward leakage of Ca2+ at the plasma membrane which is enhanced at the narrow lobes of this cell because of their greater relative surface to volume ratio. Experimental perturbation of the intracellular [Ca2+] with injection of the ion or the addition of the non-fluorescent ionophore, Br-A23187, reveal that [Ca2+] elevations can be generated and indicate that if they naturally occurred, the image system would have detected them. Further evidence that [Ca2+] gradients are lacking derives from studies with BAPTA-type buffers. Injection of 5,5'-dibromo BAPTA and 4,4'-difluoro BAPTA, which in several other systems are the most effective at dissipating intracellular [Ca2+] gradients, have no effect on development of Micrasterias. Taken together, these studies indicate that lobe outgrowth in Micrasterias does not occur in association with marked localized [Ca2+] gradients.


Subject(s)
Calcium/metabolism , Chlorophyta/metabolism , Cell Division , Chlorophyta/growth & development , Egtazic Acid/analogs & derivatives , Egtazic Acid/pharmacology
4.
Plant Cell ; 6(12): 1815-28, 1994 Dec.
Article in English | MEDLINE | ID: mdl-7866026

ABSTRACT

Lily pollen tubes possess a steep, tip-focused intracellular Ca2+ gradient and a tip-directed extracellular Ca2+ influx. Ratiometric ion imaging revealed that the gradient extends from above 3.0 microM at the apex to approximately 0.2 microM within 20 microns from the tip, while application of the Ca(2+)-specific vibrating electrode indicated that the extracellular influx measured between 1.4 and 14 pmol cm-2 sec-1. We examined the relationship between these phenomena and their role in tube growth by using different 1,2-bis(o-aminophenoxy)ethane N,N,N',N'-tetraacetic acid (BAPTA)-type buffers and hypertonic media. Injection of active BAPTA-type buffers or application of elevated levels of sucrose reversibly inhibited growth, destroyed tip zonation of organelles, and modified normal patterns of cytoplasmic streaming. Simultaneously, these treatments dissipated both the intracellular tip-focused gradient and the extracellular Ca2+ flux. Of the BAPTA-type buffers, 5,5'-dibromo-BAPTA (dissociation constant [Kd] is 1.5 microM) and 4,4'-difluoro-BAPTA (Kd of 1.7 microM) exhibited greater activity than those buffers with either a higher affinity (5,5'-dimethyl-BAPTA, Kd of 0.15 microM; BAPTA, Kd of 0.21 microM; 5,5'-difluoro-BAPTA, Kd of 0.25 microM) or lower affinity (5-methyl, 5'-nitro-BAPTA, Kd of 22 microM) for Ca2+. Our findings provide evidence that growing pollen tubes have open Ca2+ channels in their tip and that these channels become inactivated in nongrowing tubes. The studies with elevated sucrose support the view that stretching of the apical plasma membrane contributes to the maintenance of the Ca2+ signal.


Subject(s)
Calcium/metabolism , Pollen , Buffers , Cytoplasm/metabolism , Egtazic Acid/analogs & derivatives , Hypertonic Solutions , Ion Transport , Microinjections , Plants/metabolism
5.
J Cell Sci ; 107 ( Pt 4): 775-84, 1994 Apr.
Article in English | MEDLINE | ID: mdl-8056836

ABSTRACT

Microtubule (MT) turnover within the four principal MT arrays, the cortical array, the preprophase band, the mitotic spindle and the phragmoplast, has been measured in living stamen hair cells of Tradescantia that have been injected with fluorescent neurotubulin. Using the combined techniques of confocal laser scanning microscopy and fluorescence redistribution after photobleaching (FRAP), we report that the half-time of turnover in spindle MTs is t 1/2 = 31 +/- 6 seconds, which is in excellent agreement with previous measurements of turnover in animal cell spindles. Tradescantia interphase MTs, however, exhibit turnover rates (t 1/2 = 67 +/- seconds) that are some 3.4-fold faster than those measured in interphase mammalian cells, and thus are revealed as being highly dynamic. Preprophase band and phragmoplast MTs have turnover rates similar to those of interphase MTs in Tradescantia. The spatial and temporal aspects of the fluorescence redistribution after photobleaching in all four MT arrays are more consistent with subunit exchange by the mechanism of dynamic instability than treadmilling. This is the first quantification of MT dynamics in plant cells.


Subject(s)
Microscopy, Fluorescence , Microtubules/ultrastructure , Plant Cells , Cell Cycle , Kinetics , Lasers , Microinjections , Microtubules/radiation effects , Photochemistry , Spindle Apparatus/ultrastructure , Tubulin/analysis
6.
Planta ; 186(3): 361-6, 1992 Feb.
Article in English | MEDLINE | ID: mdl-24186732

ABSTRACT

The herbicides amiprophos-methyl (APM) and oryzalin disrupt mitosis and cytokinesis in plant cells by causing the depolymerization of microtubules. These drugs have also been shown to affect calcium sequestration by mitochondria. Controversy thus exists as to whether microtubule depolymerization occurs as a result of direct interaction between the drug and tubulin, or because of elevated intracellular calcium levels resulting from drug interference with calcium regulation. In order to clarify this issue we have directly measured the effect of these herbicides and other cell-motility-altering drugs on intracellular calcium levels in stamen-hair cells of Tradescantia. The results indicate that low levels (1-3 µM) of APM and oryzalin can act within 3-7 min causing disorganization of mitosis. Studies using the calcium indicator indo-1 injected into stamen-hair cells to monitor internal levels of calcium, show that at drug concentrations where inhibitory effects on mitosis and-or cytokinesis are clearly seen, APM, oryzalin, isopropyl-N-phenyl carbamate, caffeine and cytochalasin D produce no change in intracellular calcium levels. Furthermore, except for cytochalasin D, these drugs do not inhibit cytoplasmic streaming, a calcium-sensitive process. We conclude that the mode of action of these drugs on the cytoskeleton is independent of an effect on intracellular calcium.

7.
J Cell Biol ; 111(1): 171-82, 1990 Jul.
Article in English | MEDLINE | ID: mdl-2114409

ABSTRACT

Several lines of evidence support the idea that increases in the intracellular free calcium concentration [( Ca2+]i) regulate chromosome motion. To directly test this we have iontophoretically injected Ca2+ or related signaling agents into Tradescantia stamen hair cells during anaphase and measured their effect on chromosome motion and on the Ca2+ levels. Ca2+ at (+)1 nA for 10 s (approximately 1 microM) causes a transient (20 s) twofold increase in the rate of chromosome motion, while at higher levels it slows or completely stops motion. Ca2+ buffers, EGTA, and 5,5'-dibromo-1,2- bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, which transiently suppress the ion level, also momentarily stop motion. Injection of K+, Cl-, or Mg2+, as controls, have no effect on motion. The injection of GTP gamma S, and to a lesser extent GTP, enhances motion similarly to a low level of Ca2+. However, inositol 1,4,5-trisphosphate, ATP gamma S, ATP, and GDP beta S have no effect. Measurement of the [Ca2+]i with indo-1 reveals that the direct injections of Ca2+ produce the expected increases. GTP gamma S, on the other hand, causes only a small [Ca2+]i rise, which by itself is insufficient to increase the rate of chromosome motion. Further studies reveal that any negative ion injection, presumably through hyperpolarization of the membrane potential, generates a similar small pulse of Ca2+, yet these agents have no effect on motion. Two major conclusions from these studies are as follows. (a) Increased [Ca2+]i can enhance the rate of motion, if administered in a narrow physiological window around 1 microM; concentrations above 1 microM or below the physiological resting level will slow or stop chromosomes. (b) GTP gamma S enhances motion by a mechanism that does not cause a sustained uniform rise of [Ca2+]i in the spindle; this effect may be mediated through very localized [Ca2+]i changes or Ca2(+)-independent effectors.


Subject(s)
Calcium/physiology , Chromosomes/ultrastructure , Plant Cells , Adenine Nucleotides/pharmacology , Anaphase , Chromosomes/drug effects , Chromosomes/physiology , Egtazic Acid/pharmacology , Guanine Nucleotides/pharmacology , Kinetics , Microscopy, Fluorescence/instrumentation , Microscopy, Fluorescence/methods , Plant Physiological Phenomena , Plants/ultrastructure
8.
J Cell Biol ; 105(5): 2137-43, 1987 Nov.
Article in English | MEDLINE | ID: mdl-3680374

ABSTRACT

Changes in free calcium concentration [( Ca]) have been detected during anaphase in stamen hair cells of Tradescantia. Cells have been injected iontophoretically with the calcium sensitive metallochromic dye arsenazo III and changes in differential absorbance have been measured using a spinning wheel microspectrophotometer. The results obtained on single cells progressing from midmetaphase through to cytokinesis show that the free [Ca] first begins in increase after the initial separation of the sister chromosomes marking the onset of anaphase. The increase continues for 10-15 min while the chromosomes move to the poles; thereafter the [Ca] declines with the cell plate appearing about the time that the ion returns to its basal level. The close temporal correlation firstly between the rise in [Ca] and the breakdown of spindle microtubules (MTs) during anaphase and secondly, between the subsequent fall in [Ca] and the emergence of the MT-containing phragmoplast provides evidence consistent with the idea that endogenous fluctuations in [Ca] control the disassembly/assembly of MTs during mitosis.


Subject(s)
Calcium/metabolism , Plant Cells , Anaphase , Metaphase , Mitosis , Plants/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...