Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 373(6559): eabc1048, 2021 Sep 03.
Article in English | MEDLINE | ID: mdl-34516843

ABSTRACT

Oncogenes only transform cells under certain cellular contexts, a phenomenon called oncogenic competence. Using a combination of a human pluripotent stem cell­derived cancer model along with zebrafish transgenesis, we demonstrate that the transforming ability of BRAFV600E along with additional mutations depends on the intrinsic transcriptional program present in the cell of origin. In both systems, melanocytes are less responsive to mutations, whereas both neural crest and melanoblast populations are readily transformed. Profiling reveals that progenitors have higher expression of chromatin-modifying enzymes such as ATAD2, a melanoma competence factor that forms a complex with SOX10 and allows for expression of downstream oncogenic and neural crest programs. These data suggest that oncogenic competence is mediated by regulation of developmental chromatin factors, which then allow for proper response to those oncogenes.


Subject(s)
Carcinogenesis/genetics , Carcinogenesis/pathology , Chromatin/metabolism , Melanoma/genetics , Melanoma/pathology , Neural Crest/pathology , ATPases Associated with Diverse Cellular Activities/genetics , ATPases Associated with Diverse Cellular Activities/metabolism , Animals , Animals, Genetically Modified , Chromatin/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Humans , Melanocytes/metabolism , Melanocytes/pathology , Mice , Neoplasms, Experimental , Neoplastic Stem Cells/pathology , Neural Crest/metabolism , Pluripotent Stem Cells/pathology , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , SOXE Transcription Factors/genetics , SOXE Transcription Factors/metabolism , Transcription, Genetic , Zebrafish
2.
Cell Stem Cell ; 27(1): 35-49.e6, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32619517

ABSTRACT

Autism is a clinically heterogeneous neurodevelopmental disorder characterized by impaired social interactions, restricted interests, and repetitive behaviors. Despite significant advances in the genetics of autism, understanding how genetic changes perturb brain development and affect clinical symptoms remains elusive. Here, we present a multiplex human pluripotent stem cell (hPSC) platform, in which 30 isogenic disease lines are pooled in a single dish and differentiated into prefrontal cortex (PFC) lineages to efficiently test early-developmental hypotheses of autism. We define subgroups of autism mutations that perturb PFC neurogenesis and are correlated to abnormal WNT/ßcatenin responses. Class 1 mutations (8 of 27) inhibit while class 2 mutations (5 of 27) enhance PFC neurogenesis. Remarkably, autism patient data reveal that individuals carrying subclass-specific mutations differ clinically in their corresponding language acquisition profiles. Our study provides a framework to disentangle genetic heterogeneity associated with autism and points toward converging molecular and developmental pathways of diverse autism-associated mutations.


Subject(s)
Autistic Disorder , Neurodevelopmental Disorders , Pluripotent Stem Cells , Autistic Disorder/genetics , Cell Differentiation/genetics , Humans , Neurogenesis
3.
Dis Model Mech ; 11(9)2018 09 27.
Article in English | MEDLINE | ID: mdl-30061297

ABSTRACT

Transgenic animals are invaluable for modeling cancer genomics, but often require complex crosses of multiple germline alleles to obtain the desired combinations. Zebrafish models have advantages in that transgenes can be rapidly tested by mosaic expression, but typically lack spatial and temporal control of tumor onset, which limits their utility for the study of tumor progression and metastasis. To overcome these limitations, we have developed a method referred to as Transgene Electroporation in Adult Zebrafish (TEAZ). TEAZ can deliver DNA constructs with promoter elements of interest to drive fluorophores, oncogenes or CRISPR-Cas9-based mutagenic cassettes in specific cell types. Using TEAZ, we created a highly aggressive melanoma model via Cas9-mediated inactivation of Rb1 in the context of BRAFV600E in spatially constrained melanocytes. Unlike prior models that take ∼4 months to develop, we found that TEAZ leads to tumor onset in ∼7 weeks, and these tumors develop in fully immunocompetent animals. As the resulting tumors initiated at highly defined locations, we could track their progression via fluorescence, and documented deep invasion into tissues and metastatic deposits. TEAZ can be deployed to other tissues and cell types, such as the heart, with the use of suitable transgenic promoters. The versatility of TEAZ makes it widely accessible for rapid modeling of somatic gene alterations and cancer progression at a scale not achievable in other in vivo systems.


Subject(s)
Aging/genetics , Electroporation , Transgenes , Zebrafish/genetics , Animals , Animals, Genetically Modified , CRISPR-Cas Systems/genetics , Carcinogenesis/genetics , Carcinogenesis/pathology , Disease Models, Animal , Disease Progression , Embryo, Nonmammalian/metabolism , Gene Transfer Techniques , Melanoma/pathology , Plasmids/genetics , Promoter Regions, Genetic , Zebrafish/embryology
4.
Dev Cell ; 45(5): 580-594.e7, 2018 06 04.
Article in English | MEDLINE | ID: mdl-29804876

ABSTRACT

Patterning of vertebrate melanophores is essential for mate selection and protection from UV-induced damage. Patterning can be influenced by circulating long-range factors, such as hormones, but it is unclear how their activity is controlled in recipient cells to prevent excesses in cell number and migration. The zebrafish wanderlust mutant harbors a mutation in the sheddase bace2 and exhibits hyperdendritic and hyperproliferative melanophores that localize to aberrant sites. We performed a chemical screen to identify suppressors of the wanderlust phenotype and found that inhibition of insulin/PI3Kγ/mTOR signaling rescues the defect. In normal physiology, Bace2 cleaves the insulin receptor, whereas its loss results in hyperactive insulin/PI3K/mTOR signaling. Insulin B, an isoform enriched in the head, drives the melanophore defect. These results suggest that insulin signaling is negatively regulated by melanophore-specific expression of a sheddase, highlighting how long-distance factors can be regulated in a cell-type-specific manner.


Subject(s)
Amyloid Precursor Protein Secretases/metabolism , Body Patterning , Insulin/metabolism , Melanophores/physiology , Pigmentation , Zebrafish Proteins/metabolism , Zebrafish/physiology , Amyloid Precursor Protein Secretases/genetics , Animals , Cell Movement/physiology , Embryo, Nonmammalian/cytology , Embryo, Nonmammalian/physiology , Gene Expression Regulation, Developmental , Insulin/genetics , Melanophores/cytology , Mutation , Phenotype , Phosphatidylinositol 3-Kinases , Signal Transduction , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Zebrafish/embryology , Zebrafish Proteins/genetics
5.
PLoS Biol ; 14(4): e1002442, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27082731

ABSTRACT

The creation of restriction enzymes with programmable DNA-binding and -cleavage specificities has long been a goal of modern biology. The recently discovered Type IIL MmeI family of restriction-and-modification (RM) enzymes that possess a shared target recognition domain provides a framework for engineering such new specificities. However, a lack of structural information on Type IIL enzymes has limited the repertoire that can be rationally engineered. We report here a crystal structure of MmeI in complex with its DNA substrate and an S-adenosylmethionine analog (Sinefungin). The structure uncovers for the first time the interactions that underlie MmeI-DNA recognition and methylation (5'-TCCRAC-3'; R = purine) and provides a molecular basis for changing specificity at four of the six base pairs of the recognition sequence (5'-TCCRAC-3'). Surprisingly, the enzyme is resilient to specificity changes at the first position of the recognition sequence (5'-TCCRAC-3'). Collectively, the structure provides a basis for engineering further derivatives of MmeI and delineates which base pairs of the recognition sequence are more amenable to alterations than others.


Subject(s)
DNA/chemistry , Deoxyribonucleases, Type II Site-Specific/chemistry , Base Sequence , DNA Methylation , Hydrolysis , Molecular Sequence Data
6.
J Vis Exp ; (109): e53806, 2016 Mar 03.
Article in English | MEDLINE | ID: mdl-26967464

ABSTRACT

Human pluripotent stem cells (hPSCs) represent a platform to study human development in vitro under both normal and disease conditions. Researchers can direct the differentiation of hPSCs into the cell type of interest by manipulating the culture conditions to recapitulate signals seen during development. One such cell type is the melanocyte, a pigment-producing cell of neural crest (NC) origin responsible for protecting the skin against UV irradiation. This protocol presents an extension of a currently available in vitro Neural Crest differentiation protocol from hPSCs to further differentiate NC into fully pigmented melanocytes. Melanocyte precursors can be enriched from the Neural Crest protocol via a timed exposure to activators of WNT, BMP, and EDN3 signaling under dual-SMAD-inhibition conditions. The resultant melanocyte precursors are then purified and matured into fully pigmented melanocytes by culture in a selective medium. The resultant melanocytes are fully pigmented and stain appropriately for proteins characteristic of mature melanocytes.


Subject(s)
Cell Culture Techniques , Neural Crest/cytology , Pluripotent Stem Cells/cytology , Cell Differentiation/physiology , Cell Separation/methods , Flow Cytometry/methods , Humans
7.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 67(Pt 10): 1262-5, 2011 Oct 01.
Article in English | MEDLINE | ID: mdl-22102043

ABSTRACT

Type IIL restriction enzymes have rejuvenated the search for user-specified DNA binding and cutting. By aligning and contrasting the highly comparable amino-acid sequences yet diverse recognition specificities across the family of enzymes, amino acids involved in DNA binding have been identified and mutated to produce alternative binding specificities. To date, the specificity of MmeI (a type IIL restriction enzyme) has successfully been altered at positions 3, 4 and 6 of the asymmetric TCCRAC (where R is a purine) DNA-recognition sequence. To further understand the structural basis of MmeI DNA-binding specificity, the enzyme has been crystallized in complex with its DNA substrate. The crystal belonged to space group P1, with unit-cell parameters a = 61.73, b = 94.96, c = 161.24 Å, α = 72.79, ß = 89.12, γ = 71.68°, and diffracted to 2.6 Å resolution when exposed to synchrotron radiation. The structure promises to reveal the basis of MmeI DNA-binding specificity and will complement efforts to create enzymes with novel specificities.


Subject(s)
DNA/chemistry , Deoxyribonucleases, Type II Site-Specific/chemistry , Crystallization , Crystallography, X-Ray , DNA/metabolism , Deoxyribonucleases, Type II Site-Specific/metabolism , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...