Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceuticals (Basel) ; 16(8)2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37631009

ABSTRACT

BACKGROUND: Vulvovaginal candidiasis (VVC) is a worldwide public health problem caused predominantly by the opportunistic polymorphic fungus Candida albicans, whose pathogenicity is associated with its morphological adaptability. To potentiate the treatment of C. albicans-induced VVC by an alternative method as photodynamic therapy (PDT), hypericin (Hy), a potent photosensitizer compound was incorporated into a nanostructured lipid carrier (NLC) and dispersed in hydrogel (HG). METHODS: After preparation of the sonication process, an NLC loaded with Hy was dispersed in HG based on Poloxamer 407 and chitosan obtaining Hy.NLC-HG. This hydrogel system was physically and chemically characterized and its in vitro and in vivo photodynamic and antifungal effects were evaluated. RESULTS: Through scanning electron microscopy, it was possible to observe a hydrogel system with a porous polymeric matrix and irregular microcavities. The Hy.NLC-HG system showed mucoadhesive properties (0.45 ± 0.08 N) and a satisfactory injectability (15.74 ± 4.75 N.mm), which indicates that it can be easily applied in the vaginal canal, in addition to a controlled and sustained Hy release profile from the NLC-HG of 28.55 ± 0.15% after 720 min. The in vitro antibiofilm assay significantly reduced the viability of C. albicans (p < 0.001) by 1.2 log10 for Hy.NLC-HG/PDT and 1.9 log10 for PS/PDT, Hy.NLC/PDT, and free RB/PDT, compared to the PBS/PDT negative control. The in vivo antifungal evaluation showed that animals treated with the vaginal cream (non-PDT) and the PDT-mediated Hy.NLC-HG system showed a significant difference of p < 0.001 in the number of C. albicans colonies (log) in the vaginal canal, compared to the inoculation control group. CONCLUSIONS: Thus, we demonstrate the pharmaceutical, antifungal, and photodynamic potential of hydrogel systems for Hy vaginal administration.

2.
Biofouling ; 34(4): 357-367, 2018 04.
Article in English | MEDLINE | ID: mdl-29671631

ABSTRACT

Candida albicans biofilms exhibit unique characteristics and are highly resistant to antifungal agents. Antimicrobial photodynamic therapy (aPDT) is an alternative treatment limited to treating superficial infections due to the poor light penetration. In this manuscript, the antifungal properties of sonodynamic therapy (SDT) were assessed. SDT uses ultrasound instead of light, enabling the treatment of deeper infections. Planktonic cells and biofilms of C. albicans were treated with aPDT or SDT, in addition to combined aPDT/SDT, with cell survival determined using colony forming units. The total biomass and structural integrity of the biofilms were also investigated. The results demonstrated that while individual aPDT or SDT eradicated suspensions, they had little impact on biofilms. However, combined aPDT/SDT significantly reduced the viability and total biomass of biofilms. Microscopic images revealed that biofilms treated with aPDT/SDT were thinner and comprised mainly of dead cells. These results highlight the potential of combined aPDT/SDT for the inactivation of C. albicans biofilms.


Subject(s)
Biofilms , Candida albicans/drug effects , Photosensitizing Agents/pharmacology , Antifungal Agents/pharmacology , Candida albicans/physiology , Photochemotherapy
SELECTION OF CITATIONS
SEARCH DETAIL
...