Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Acoust Soc Am ; 154(6): 3943-3954, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38147018

ABSTRACT

Thermoacoustic refrigerators exploit the thermodynamic interaction between oscillating gas particles and a porous solid to generate a temperature gradient that provides a cooling effect. In this work, we present a resonator with dual enclosed driver end-caps and show that the temperature gradient across a ceramic thermoacoustic element placed in the cavity could be controlled by modifying the phase difference of the drivers, thus enabling precise control of the refrigeration capability via the temperature difference. Through deltaec simulation results, the response of the temperature gradient to various dynamic boundary conditions that alter the time-phasing and wave dynamics in the resonator are demonstrated. An experimental apparatus is constructed with two moving-coil speakers and a ceramic stack, which is shown to exhibit a temperature gradient along its length, based on the traveling-wave-like nature of the acoustic wave excited by the speakers. By adjusting the relative phase lag between the two speakers, the temperature gradient across the stack is made to increase, decrease, or flip sign. Finally, a desired temperature difference that changes in time is achieved. The results presented in this work represent a key conceptual advancement of thermoacoustic-based temperature control devices that can better serve in extreme environments and precision applications.

2.
Sci Adv ; 9(45): eadi2606, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37948528

ABSTRACT

Accurate modeling and prediction of damage induced by dynamic loading in materials have long proved to be a difficult task. Examination of postmortem recovered samples cannot capture the time-dependent evolution of void nucleation and growth, and attempts at analytical models are hindered by the necessity to make simplifying assumptions, because of the lack of high-resolution, in situ, time-resolved experimental data. We use absorption contrast imaging to directly image the time evolution of spall damage in metals at ∼1.6-µm spatial resolution. We observe a dependence of void distribution and size on time and microstructure. The insights gained from these data can be used to validate and improve dynamic damage prediction models, which have the potential to lead to the design of superior damage-resistant materials.

3.
J Acoust Soc Am ; 150(3): 2046, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34598621

ABSTRACT

Unmanned aerial vehicles, specifically quadrotor drones, are increasingly commonplace in community and workplace settings and are often used for photography, cinematography, and small parcel transport. The presence of these flying robotic systems has a substantial impact on the surrounding environment. To better understand the ergonomic impacts of quadrotor drones, a quantitative description of their acoustic signature is needed. While previous efforts have presented detailed acoustic characterizations, there is a distinct lack of high spatial-fidelity investigations of the acoustic field of a quadrotor hovering under its own power. This work presents an experimental quantification of the spatial acoustic pressure distribution in the near-field of a live hovering unmanned aerial vehicle. A large-aperture scanning microphone array was constructed to measure sound pressure level at a total of 1728 points over a 2 m × 3 m × 1.5 m volume. A physics-infused machine learning model was fit to the data to better visualize and understand the experimental results. The experimental data and modeling presented in this work are intended to inform future design of experiments for quadrotor drone acoustics, provide quantitative information on the acoustic near-field signature, and demonstrate the utility of optical motion tracking coupled with a custom microphone array for characterization of live acoustic sources.

SELECTION OF CITATIONS
SEARCH DETAIL
...