Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 59(24): 18432-18443, 2020 Dec 21.
Article in English | MEDLINE | ID: mdl-33258586

ABSTRACT

This work reports on the preparation and optical characterization of two metal-organic frameworks (MOFs) based on strontium ions and 2-amino-1,4-benzenedicarboxylate (NH2-bdc) ligand: i.e., [Sr(NH2-bdc)(DMF)]n (1) and {[Sr(NH2-bdc)(Form)]·H2O}n (2) (where DMF = dimethylformamide and Form = formamide). Compound 1 has a 3D architecture built up from the linkage established by NH2-bdc among metal-carboxylate rods, leaving significant microchannels that are largely occupied by DMF molecules coordinated to strontium centers. The solvent molecules play a crucial role in the photoluminescence (PL) properties, which has been deeply characterized by diffuse reflectance and variable-temperature emission. Interestingly, both materials present intriguing photoluminescence (PL) properties involving intense short-lived and long-lasting phosphorescence (LLP), though the latter is especially remarkable for compound 2 with a lifetime of 815 ms at low temperature. Conversely, the strong PL shown by 1 may be successfully exploited due to both its luminescent thermochromism observed in the RT to 10 K range and its solvent-dependent PL sensing capacity, imbuing this material with potential activity as a PL thermometer as well as a toluene detector in water solutions.

2.
Inorg Chem ; 59(21): 15733-15740, 2020 Nov 02.
Article in English | MEDLINE | ID: mdl-33035421

ABSTRACT

Herein, two novel isostructural metal-organic frameworks (MOFs) M-URJC-4 (M = Co, Ni; URJC = "Universidad Rey Juan Carlos") with open metal sites, permanent microposity, and large surface areas and pore volumes have been developed. These novel MOFs, with polyhedral morphology, crystallize in the monoclinic P21/c space group, exhibiting a three-dimensional structure with microporous channels along the c axis. Initially, they were fully characterized and tested in hydrogen (H2) adsorption at different conditions of temperature and pressure. The physisorption capacities of both materials surpassed the gravimetric H2 uptake shown by most MOF materials under the same conditions. On the basis of the outstanding adsorption properties, the Ni-URJC-4 material was used as a catalyst in a one-pot reductive amination reaction using various carbonyl compounds and primary amines. A possible chemical pathway to obtain secondary amines was proposed via imine formation, and remarkable performances were accomplished. This work evidences the dual ability of M-URJC-4 materials to be used as a H2 adsorbent and a catalyst in reductive amination reactions, activating molecular H2 at low pressures for the reduction of C═N double bonds and providing reference structural features for the design of new versatile heterogeneous materials for industrial application.

3.
Dalton Trans ; 48(30): 11556-11564, 2019 Aug 14.
Article in English | MEDLINE | ID: mdl-31294733

ABSTRACT

A novel metal-organic framework (MOF) based on strontium alkaline-earth metal and 2-amino-1,4-benzenedicarboxylic acid (NH2-bdc) has been developed. This material is formed by a linear succession of face-sharing strontium polyhedra bridged by an organic ligand molecule to give a three-dimensional network with rhombohedral one-directional channels. This MOF is stable in polar organic solvents and up to 250 °C. The basic catalytic activity of both strontium metal nodes and amino groups of the ligand was tested in Knoevenagel condensation reactions. The influence of the temperature and reaction solvent over the catalytic performance of the MOF catalyst was demonstrated. The strontium/amino-containing MOF material evidenced a remarkable activity as compared to other conventional alkaline oxides typically used as reference basic solid catalysts. The novel MOF material showed remarkable activity and structural stability during five consecutive catalytic runs with no evidence of activity loss under the best reaction conditions found in this study.

4.
Chemphyschem ; 20(10): 1334-1339, 2019 05 16.
Article in English | MEDLINE | ID: mdl-30657621

ABSTRACT

A novel URJC-3 material based on cobalt and 5,5'-(diazene-1,2-diyl)diisophthalate ligand, containing Lewis acid and basic sites, has been synthesized under solvothermal conditions. Compound URJC-3, with polyhedral morphology, crystallizes in the tetragonal and P43 21 2 space group, exhibiting a three-dimensional structure with small channels along a and b axes. This material was fully characterized, and its hydrogen adsorption properties were estimated for a wide range of temperatures (77-298 K) and pressures (1-170 bar). The hydrogen storage capacity of URJC-3 is quite high in relation to its moderate surface area, which is probably due to the confinement effect of hydrogen molecules inside its reduced pores of 6 Å, which is close the ionic radii of hydrogen molecules. The storage capacity of this material is not only higher than that of active carbon and purified single-walled carbon nanotubes, but also surpasses the gravimetric hydrogen uptake of most MOF materials.

5.
Nanomaterials (Basel) ; 7(6)2017 Jun 16.
Article in English | MEDLINE | ID: mdl-28621710

ABSTRACT

The activity and recyclability of Cu-MOF-74 as a catalyst was studied for the ligand-free C-O cross-coupling reaction of 4-nitrobenzaldehyde (NB) with phenol (Ph) to form 4-formyldiphenyl ether (FDE). Cu-MOF-74 is characterized by having unsaturated copper sites in a highly porous metal-organic framework. The influence of solvent, reaction temperature, NB/Ph ratio, catalyst concentration, and basic agent (type and concentration) were evaluated. High conversions were achieved at 120 °C, 5 mol % of catalyst, NB/Ph ratio of 1:2, DMF as solvent, and 1 equivalent of K2CO3 base. The activity of Cu-MOF-74 material was higher than other ligand-free copper catalytic systems tested in this study. This catalyst was easily separated and reused in five successive runs, achieving a remarkable performance without significant porous framework degradation. The leaching of copper species in the reaction medium was negligible. The O-arylation between NB and Ph took place only in the presence of Cu-MOF-74 material, being negligible without the solid catalyst. The catalytic advantages of using nanostructured Cu-MOF-74 catalyst were also proven.

6.
Polymers (Basel) ; 8(2)2016 Feb 05.
Article in English | MEDLINE | ID: mdl-30979139

ABSTRACT

Emerging new metal-organic structures with tunable physicochemical properties is an exciting research field for diverse applications. In this work, a novel metal-organic framework Cu(HIT)(DMF)0.5, named URJC-1, with a three-dimensional non-interpenetrated utp topological network, has been synthesized. This material exhibits a microporous structure with unsaturated copper centers and imidazole⁻tetrazole linkages that provide accessible Lewis acid/base sites. These features make URJC-1 an exceptional candidate for catalytic application in acid and base reactions of interest in fine chemistry. The URJC-1 material also displays a noteworthy thermal and chemical stability in different organic solvents of different polarity and boiling water. Its catalytic activity was evaluated in acid-catalyzed Friedel⁻Crafts acylation of anisole with acetyl chloride and base-catalyzed Knoevenagel condensation of benzaldehyde with malononitrile. In both cases, URJC-1 material showed very good performance, better than other metal organic frameworks and conventional catalysts. In addition, a remarkable structural stability was proven after several consecutive reaction cycles.

7.
Langmuir ; 26(8): 5300-3, 2010 Apr 20.
Article in English | MEDLINE | ID: mdl-20334392

ABSTRACT

Partial isomorphic substitution of Zn in IRMOF metal clusters by cobalt ions is described for the first time. Specifically, different numbers of Co(2+) ions have been incorporated during solvothermal crystallization into the Zn-based MOF-5 (IRMOF-1) framework, which is one of the most studied MOF materials. The amount of Zn that can be substituted seems to be limited, being no more than 25% of total metal content, that is, no more than one Co atom inside every metal cluster formed by four transition-metal ions, on average. Several characterization techniques, including X-ray diffraction, DR UV-visible spectroscopy, N(2) adsorption isotherms, and thermogravimetrical analysis, strongly support the effective incorporation of Co into the material framework. As-synthesized CoMOF-5 has cobalt ions in octahedral coordination, changing to tetrahedral by simple evacuation, presumably by the removal of two diethylformamide molecules per Co ion. Moreover, the H(2), CH(4), and CO(2) uptake of MOF-5 materials systematically increases with the Co content, particularly at high pressure. Such an increase is moderate anyway, considering that Co is incorporated into unexposed metal sites that are less accessible to gas molecules.

8.
Chem Commun (Camb) ; (8): 1000-1, 2004 Apr 21.
Article in English | MEDLINE | ID: mdl-15069514

ABSTRACT

A new mild crystallization procedure has been applied after a synthesis route in the presence of a non-ionic surfactant, leading to the preparation of bimodal micro-mesoporous TiO2, with remarkable textural properties and pore walls formed by anatase nanocrystals, which exhibit photocatalytic activity.

SELECTION OF CITATIONS
SEARCH DETAIL
...