Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Publication year range
1.
Pharmaceuticals (Basel) ; 17(1)2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38256902

ABSTRACT

Causality algorithms help establish relationships between drug use and adverse event (AE) occurrence. High drug exposure leads to a higher likelihood of an AE being classified as an adverse drug reaction (ADR). However, there is a knowledge gap regarding what concentrations are predictive of ADRs, as this has not been systematically studied. In this work, the Spanish Pharmacovigilance System (SEFV) algorithm was used to define the relationship between the AE occurrence and drug administration in 178 healthy volunteers participating in five desvenlafaxine single-dose clinical trials, a selective serotonin and norepinephrine reuptake inhibitor that may cause dizziness, headache, nausea, dry mouth, constipation and hyperhidrosis. Eighty-three subjects presented 172 AEs that were classified as possible (101), conditional (31), unrelated (24) and probable (16). AUC∞ and Cmax were significantly higher in volunteers with vs. without ADRs (5981.24 ng·h/mL and 239.06 ng/mL and 4770.84 ng·h/mL and 200.69 ng/mL, respectively). Six of 19 subjects with conditional AEs with an SEFV score of 3 points presented an AUC∞ ≥ 6500 ng·h/mL or a Cmax ≥ 300 ng/mL (i.e., above percentile 75) and were summed one point on their SEFV score and classified as "possible" (4 points), improving the capacity of ADR detection.

2.
Pharmaceutics ; 15(2)2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36839726

ABSTRACT

Amlodipine is an antihypertensive drug with unknown pharmacogenetic biomarkers. This research is a candidate gene study that looked for associations between amlodipine pharmacokinetics and safety and pharmacogenes. Pharmacokinetic and safety data were taken from 160 volunteers from eight bioequivalence trials. In the exploratory step, 70 volunteers were genotyped for 44 polymorphisms in different pharmacogenes. CYP2D6 poor metabolizers (PMs) showed higher half-life (t1/2) (univariate p-value (puv) = 0.039, multivariate p-value (pmv) = 0.013, ß = -5.31, R2 = 0.176) compared to ultrarapid (UMs), normal (NMs) and intermediate metabolizers (IMs). SLC22A1 rs34059508 G/A genotype was associated with higher dose/weight-corrected area under the curve (AUC72/DW) (puv = 0.025; pmv = 0.026, ß = 578.90, R2 = 0.060) compared to the G/G genotype. In the confirmatory step, the cohort was increased to 160 volunteers, who were genotyped for CYP2D6, SLC22A1 and CYP3A4. In addition to the previous associations, CYP2D6 UMs showed a lower AUC72/DW (puv = 0.046, pmv = 0.049, ß = -68.80, R2 = 0.073) compared to NMs, IMs and PMs and the SLC22A1 rs34059508 G/A genotype was associated with thoracic pain (puv = 0.038) and dizziness (puv = 0.038, pmv = 0.014, log OR = 10.975). To our knowledge, this is the first work to report a strong relationship between amlodipine and CYP2D6 and SLC22A1. Further research is needed to gather more evidence before its application in clinical practice.

3.
Front Pharmacol ; 14: 1110460, 2023.
Article in English | MEDLINE | ID: mdl-36817149

ABSTRACT

Venlafaxine pharmacokinetic variability and pharmacotherapy outcomes are well known to be related to CYP2D6 pharmacogenetic phenotype. In contrast, scarce pharmacogenetic information is available nowadays concerning desvenlafaxine, its active metabolite first marketed in 2012. The aim of this study was to evaluate the impact of 29 alleles in 12 candidate genes (e.g., CYP enzymes like CYP2D6, CYP3A4, or CYP2C19; ABC transporters like ABCB1; SLCO1B1; and UGT enzymes like UGT1A1) on desvenlafaxine pharmacokinetic variability and tolerability. Pharmacokinetic parameters and adverse drug reaction (ADR) incidence obtained from six bioequivalence clinical trials (n = 98) evaluating desvenlafaxine formulations (five with single dose administration and one with multiple-dose administration) were analyzed. No genetic polymorphism was related to pharmacokinetic variability or ADR incidence. Volunteers enrolled in the multiple-dose clinical trial also showed a higher incidence of ADRs, e.g., xerostomia or appetite disorders. Volunteers experiencing any ADR showed a significantly higher area under the time-concentration curve (AUC) than those not experiencing any ADR (5115.35 vs. 4279.04 ng*h/mL, respectively, p = 0.034). In conclusion, the strong dose-dependent relationship with the occurrence of ADRs confirms that the mechanism of action of desvenlafaxine is essentially dose-dependent.

4.
Pharmaceutics ; 14(10)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36297437

ABSTRACT

Rasagiline is a selective and irreversible inhibitor of monoamine oxidase type B with neuroprotective effect, indicated for the management of Parkinson's disease. The aim of this work was to evaluate the impact of seven CYP1A2 alleles and of 120 additional variants located in other CYP enzymes (e.g., CYP2C19), UGT enzymes (e.g., UGT1A1) or other enzymes (e.g., NAT2), and transporters (e.g., SLCO1B1) on the pharmacokinetic variability and safety of rasagiline. A total of 118 healthy volunteers enrolled in four bioequivalence clinical trials consented to participate in this pharmacogenetic study. CYP1A2 alleles were not associated with the pharmacokinetic variability of rasagiline. Patients with ABCB1 rs1045642 G/A+A/A genotypes presented higher area under the curve adjusted by dose per weight (AUC0-∞/DW) than those with the G/G genotype (p = 0.012) and lower volume of distribution (Vd/F) and clearance (Cl/F) (p = 0.001 and p = 0.012, respectively). Subjects with the ABCC2 rs2273697 A/A genotype presented lower tmax (i.e., the time to reach the maximum concentration, Cmax) compared to those with G/G+G/A genotypes (p = 0.001). Volunteers with the SLC22A1 *1/*5 genotype exhibited lower Cmax/DW and higher tmax (p = 0.003 and p = 0.018, respectively) than subjects with the *1/*1 diplotype. Only one adverse drug reaction was reported: headache. Our results suggest the genetic polymorphism of drug transporters, rather than metabolizing enzymes, conditions the pharmacokinetics of rasagiline.

5.
Biomed Pharmacother ; 155: 113747, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36162369

ABSTRACT

Diazepam is a benzodiazepine (BZD) used worldwide for a variety of conditions. Long-term use of diazepam increases the risk for developing tolerance and dependence and for the occurrence of adverse drug reactions (ADRs). CYP3A4 and CYP2C19 mainly metabolize diazepam and are therefore the primary pharmacogenetic candidate biomarkers. In this work, we aimed to explore the impact of CYP3A4 and CYP2C19 phenotypes and of 99 additional variants in other 31 pharmacogenes (including other CYP, UGT, NAT2 and CES enzymes, ABC and SLC transporters) on diazepam pharmacokinetic variability and safety. 30 healthy volunteers that had participated in a single-dose bioequivalence clinical trial of two diazepam formulations were enrolled in the present candidate gene pharmacogenetic study. CYP2C19 poor metabolizers (PMs) showed an almost 2-fold increase in AUC0-∞/DW compared to rapid (RMs) or normal (NM) metabolizers, and a 1.46-fold increase compared to intermediate metabolizers (IMs). CYP2B6 PMs showed a 2,74-fold higher AUC0-∞/DW compared to RMs, and 2.10-fold compared to NMs (p < 0.007). A dose reduction of 25-50 % may be appropriate for CYP2C19 or CYP2B6 PMs to avoid ADRs, dependence and tolerance. Combined CYP2C19 +CYP2B6 PMs may not use diazepam or sharper dose adjustments (e.g., a dose reduction of 50-70 %) may be advisable. To our knowledge, this is the first work to report a strong relationship between CYP2B6 phenotype and diazepam pharmacokinetics. Additional nominal associations (i.e., 0.007 

Subject(s)
Cytochrome P-450 CYP2B6 , Cytochrome P-450 CYP2C19 , Diazepam , Cytochrome P-450 CYP2B6/genetics , Cytochrome P-450 CYP2C19/genetics , Diazepam/adverse effects , Diazepam/pharmacokinetics , Phenotype , Humans
6.
Sci Rep ; 12(1): 9752, 2022 06 13.
Article in English | MEDLINE | ID: mdl-35697832

ABSTRACT

Breath tests used to evaluate carbohydrates malabsorption require baseline H2 and CH4 levels as low as possible. Test cancellation is recommended when exceeding certain cut-offs (H2 ≥ 20 ppm and CH4 ≥ 10 ppm). Although following preparation protocols, many patients have baseline levels above those cut-offs. We investigated if light walking can reduce baseline H2 and CH4 levels. We retrospectively analyzed baseline H2 and CH4 levels from 1552 breath tests. Baseline levels (B1), especially in H2, were lower when obtained at later hours of the day. In those with baseline levels above cut-off, re-sampling (B2) after light walking for one hour, decreased H2 levels 8 ppm (Q1-Q3: 1-18 ppm), and 2 ppm (Q1-Q3: 0-3 ppm) for CH4. Consequently, 40% of tests with elevated B1 levels, presented B2 levels below mentioned cut-offs. Ten percent of tests considered negative when using B1 for calculations, turned positive when using B2 instead. All positive tests when using B1 values, remained elevated when using B2. Re-sampling after light walking for one hour could allow test performance in those with previous elevated baseline levels, avoiding diagnosis delays. Using the second sample for delta calculations identifies positive patients for malabsorption that would have been considered negative.


Subject(s)
Hydrogen , Malabsorption Syndromes , Breath Tests/methods , Carbohydrates , Humans , Retrospective Studies
7.
Clin Chem Lab Med ; 60(7): 1003-1010, 2022 06 27.
Article in English | MEDLINE | ID: mdl-35470640

ABSTRACT

OBJECTIVES: Retrospective studies frequently assume analytes long-term stability at ultra-low temperatures. However, these storage conditions, common among biobanks and research, may increase the preanalytical variability, adding a potential uncertainty to the measurements. This study is aimed to evaluate long-term storage stability of different analytes at <-70 °C and to assess its impact on the reference change value formula. METHODS: Twenty-one analytes commonly measured in clinical laboratories were quantified in 60 serum samples. Samples were immediately aliquoted and frozen at <-70 °C, and reanalyzed after 11 ± 3.9 years of storage. A change in concentration after storage was considered relevant if the percent deviation from the baseline measurement was significant and higher than the analytical performance specifications. RESULTS: Preanalytical variability (CVP) due to storage, determined by the percentage deviation, showed a noticeable dispersion. Changes were relevant for alanine aminotransferase, creatinine, glucose, magnesium, potassium, sodium, total bilirubin and urate. No significant differences were found in aspartate aminotransferase, calcium, carcinoembryonic antigen, cholesterol, C-reactive protein, direct bilirubin, free thryroxine, gamma-glutamyltransferase, lactate dehydrogenase, prostate-specific antigen, triglycerides, thyrotropin, and urea. As nonnegligible, CVP must remain included in reference change value formula, which was modified to consider whether one or two samples were frozen. CONCLUSIONS: After long-term storage at ultra-low temperatures, there was a significant variation in some analytes that should be considered. We propose that reference change value formula should include the CVP when analyzing samples stored in these conditions.


Subject(s)
Bilirubin , Blood Specimen Collection , Humans , Male , Retrospective Studies , Temperature , Time Factors
8.
Adv Lab Med ; 1(4): 20200102, 2020 Dec.
Article in English, Spanish | MEDLINE | ID: mdl-37360621

ABSTRACT

Objectives: Lactose malabsorption is generally assessed by hydrogen breath testing (HBT). However, this test is not recommended in patients with high baseline hydrogen concentrations (H2B). In addition, breath testing is not recommended in the current situation created by the COVID-19 pandemic, due to the potential infectiveness of the samples. The objective is to assess concordance between HBT and lactose tolerance test (LTT) depending on H2B concentrations. Methods: A total of 430 patients (40 years, Q1-Q3 = 28-54 years; 66.7% women) suspected of lactose malabsorption were included in the study. Breath and heparinized blood samples were collected at baseline and sequentially after the intake of 50 g of lactose, to measure hydrogen in breath and glycemia in blood, respectively. Results: H2B was <10 ppm in 69.5% of subjects; 10-20 ppm in 14.7%; and >20 ppm in 15.8% of subjects. In patients with H2B <20 ppm, concordance between HBT and LTT was moderate and consistently improved when the cut-off in LTT was set at 15 mg/dL. The increase in hydrogen and glucose correlated negatively (r=-0.389; p<0.05). The increase in glycemia during LTT was not influenced by H2B levels obtained in HBT. Conclusions: LTT emerges as an alternative to HBT to assess lactose malabsorption in the presence of high H2B levels or when breath testing is not recommended by the circumstances. The best concordance was obtained when the cut-off for LTT was set at 15 mg/dL.

SELECTION OF CITATIONS
SEARCH DETAIL
...