Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 62017 12 12.
Article in English | MEDLINE | ID: mdl-29231171

ABSTRACT

Understanding the computations that take place in brain circuits requires identifying how neurons in those circuits are connected to one another. We describe a technique called TRACT (TRAnsneuronal Control of Transcription) based on ligand-induced intramembrane proteolysis to reveal monosynaptic connections arising from genetically labeled neurons of interest. In this strategy, neurons expressing an artificial ligand ('donor' neurons) bind to and activate a genetically-engineered artificial receptor on their synaptic partners ('receiver' neurons). Upon ligand-receptor binding at synapses the receptor is cleaved in its transmembrane domain and releases a protein fragment that activates transcription in the synaptic partners. Using TRACT in Drosophila we have confirmed the connectivity between olfactory receptor neurons and their postsynaptic targets, and have discovered potential new connections between neurons in the circadian circuit. Our results demonstrate that the TRACT method can be used to investigate the connectivity of neuronal circuits in the brain.


Subject(s)
Drosophila melanogaster/physiology , Neural Pathways , Animals , Animals, Genetically Modified , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Female , Genetic Engineering , Male , Neuroanatomical Tract-Tracing Techniques , Neurons/cytology , Transcription, Genetic
2.
Fly (Austin) ; 11(3): 224-238, 2017 07 03.
Article in English | MEDLINE | ID: mdl-28277925

ABSTRACT

Understanding the computations that take place in neural circuits requires identifying how neurons in those circuits are connected to one another. In addition, recent research indicates that aberrant neuronal wiring may be the cause of several neurodevelopmental disorders, further emphasizing the importance of identifying the wiring diagrams of brain circuits. To address this issue, several new approaches have been recently developed. In this review, we describe several methods that are currently available to investigate the structure and connectivity of the brain, and discuss their strengths and limitations.


Subject(s)
Drosophila/genetics , Drosophila/ultrastructure , Gene Expression Profiling/methods , Microscopy, Electron/methods , Animals , Brain/metabolism , Brain/ultrastructure , Drosophila/metabolism , Nerve Net/metabolism , Nerve Net/ultrastructure , Neurons/metabolism , Neurons/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...