Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Front Microbiol ; 13: 838490, 2022.
Article in English | MEDLINE | ID: mdl-35464909

ABSTRACT

The monitoring of antimicrobial resistance (AMR) in bacterial pathogens of animals is not currently coordinated at European level. To fill this gap, experts of the European Union Joint Action on Antimicrobial Resistance and Healthcare Associated Infections (EU-JAMRAI) recommended building the European Antimicrobial Resistance Surveillance network in Veterinary medicine (EARS-Vet). In this study, we (i) identified national monitoring systems for AMR in bacterial pathogens of animals (both companion and food-producing) among 27 countries affiliated to EU-JAMRAI, (ii) described their structures and operations, and (iii) analyzed their respective strengths, weaknesses, opportunities and threats (SWOT). Twelve countries reported having at least one national monitoring system in place, representing an opportunity to launch EARS-Vet, but highlighting important gaps in AMR data generation in Europe. In total, 15 national monitoring systems from 11 countries were described and analyzed. They displayed diverse structures and operations, but most of them shared common weaknesses (e.g., data management and representativeness) and common threats (e.g., economic vulnerability and data access), which could be addressed collectively under EARS-Vet. This work generated useful information to countries planning to build or improve their system, by learning from others' experience. It also enabled to advance on a pragmatic harmonization strategy: EARS-Vet shall follow the European Committee on Antimicrobial Susceptibility Testing (EUCAST) standards, collect quantitative data and interpret AMR data using epidemiological cut-off values.

2.
J Antimicrob Chemother ; 77(3): 816-826, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35022739

ABSTRACT

BACKGROUND: Building the European Antimicrobial Resistance Surveillance network in Veterinary medicine (EARS-Vet) was proposed to strengthen the European One Health antimicrobial resistance (AMR) surveillance approach. OBJECTIVES: To define the combinations of animal species/production types/age categories/bacterial species/specimens/antimicrobials to be monitored in EARS-Vet. METHODS: The EARS-Vet scope was defined by consensus between 26 European experts. Decisions were guided by a survey of the combinations that are relevant and feasible to monitor in diseased animals in 13 European countries (bottom-up approach). Experts also considered the One Health approach and the need for EARS-Vet to complement existing European AMR monitoring systems coordinated by the ECDC and the European Food Safety Authority (EFSA). RESULTS: EARS-Vet plans to monitor AMR in six animal species [cattle, swine, chickens (broilers and laying hens), turkeys, cats and dogs], for 11 bacterial species (Escherichia coli, Klebsiella pneumoniae, Mannheimia haemolytica, Pasteurella multocida, Actinobacillus pleuropneumoniae, Staphylococcus aureus, Staphylococcus pseudintermedius, Staphylococcus hyicus, Streptococcus uberis, Streptococcus dysgalactiae and Streptococcus suis). Relevant antimicrobials for their treatment were selected (e.g. tetracyclines) and complemented with antimicrobials of more specific public health interest (e.g. carbapenems). Molecular data detecting the presence of ESBLs, AmpC cephalosporinases and methicillin resistance shall be collected too. CONCLUSIONS: A preliminary EARS-Vet scope was defined, with the potential to fill important AMR monitoring gaps in the animal sector in Europe. It should be reviewed and expanded as the epidemiology of AMR changes, more countries participate and national monitoring capacities improve.


Subject(s)
One Health , Animals , Anti-Bacterial Agents/pharmacology , Bacteria , Cats , Cattle , Chickens , Dogs , Drug Resistance, Bacterial , Female , Swine
3.
Antibiotics (Basel) ; 10(4)2021 Apr 09.
Article in English | MEDLINE | ID: mdl-33918617

ABSTRACT

Antimicrobial stewardship guidelines (ASGs) represent an important tool to help veterinarians optimize their antimicrobial use with the objective of decreasing antimicrobial resistance. The aim of this study was to map and qualitatively assess the ASGs for antimicrobial use in cats and dogs in Europe. Country representatives of the European Network for Optimization of Veterinary Antimicrobial Treatment (ENOVAT) were asked to identify ASGs published in their countries. All collated ASGs updated since January 2010 containing recommendations on antimicrobial therapy for at least three conditions affecting different organ systems in cats and dogs underwent detailed review including AGREE II analysis. Out of forty countries investigated, fifteen ASGs from eleven countries met the inclusion criteria. Several critical principles of antimicrobial use were identified, providing a framework that should assist development of stewardship guidance. The AGREE II analysis highlighted several methodological limitations of the currently available ASGs. This study sheds light on the lack of national ASGs for dogs and cats in multiple European countries and should encourage national bodies to prioritize guideline development in small animals. A greater awareness of the need to use a structured approach to guideline development could improve the quality of ASGs in the future.

4.
Prev Vet Med ; 157: 50-58, 2018 Sep 01.
Article in English | MEDLINE | ID: mdl-30086849

ABSTRACT

In this study the possible association between antibiotic use and resistance was explored, focusing on commensal Escherichia coli from livestock (veal calves, young beef cattle, pigs and broiler chickens) in Belgium between 2011 and 2015. A continuous decreasing trend in antibiotic use was observed for all classes, except for the phenicols. Antibiotic resistance of commensal E. coli significantly decreased for several of the tested antibiotics in all livestock species. A more rapidly reverted resistance was seen to 3th/4th generation cephalosporins and fluoroquinolones. Moderate to strong correlations between antibiotic use and resistance were found, except for antibiotic resistance to chloramphenicol and gentamicin and the use of the corresponding antibiotic class. Yet, total antibiotic use was positively correlated with chloramphenicol resistance, showing the potential importance of co-selection for chloramphenicol resistance. These results suggest that national antimicrobial usage reduction campaigns have beneficial effects on the overall resistance levels. Analyses were performed on small datasets, though, and care must be taken while making inference. For more detailed analysis, antibiotic use data at an animal species level are required.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Drug Resistance, Bacterial , Escherichia coli/drug effects , Livestock , Animals , Anti-Bacterial Agents/adverse effects , Belgium , Cattle , Chickens , Microbial Sensitivity Tests , Swine
5.
Vet Microbiol ; 197: 1-7, 2016 Dec 25.
Article in English | MEDLINE | ID: mdl-27938670

ABSTRACT

OBJECTIVES: To improve antimicrobial surveillance accuracy for results obtained by disk diffusion for porcine Escherichia coli, by comparing traditional clinical breakpoint interpretation with the Normalized Resistance Interpretation (NRI) method. METHODS: The susceptibilities of 921 E. coli isolates from clinically healthy pigs at slaughter age was determined for 15 antimicrobials by the Kirby Bauer disk diffusion technique. NRI with previously established optimal controlled parameters for E. coli ATCC25922 was used to reconstruct the fully susceptible population of the tested E. coli isolates. Based on a lower limit for susceptibility, set at 2.5 standard deviations below the mean of the reconstructed susceptible population, the non-wild type percentage isolates was compared with the clinical resistance percentage. RESULTS: The NRI method was applicable for 11 out of the 15 antimicrobials tested. Antimicrobials for which no normal distribution of inhibition zones for the population of susceptible isolates was seen, could not be used to reconstruct the susceptible population. Clinical breakpoints much lower than the epidemiological cut-off values resulted into presumptively identifying isolates as clinically susceptible, but likely carrying acquired resistance determinants. Otherwise, clinical breakpoints did cut through the WT population for several antibiotics tested, categorizing isolates from the WT population as not susceptible. CONCLUSIONS: NRI was shown to be a valid method to define the WT population for disk diffusion outcomes, provided a normal distribution of the susceptible bacterial species population is present. Until international harmonization of breakpoints is achieved, it might give rise to a wide application in monitoring antimicrobial resistance in veterinary medicine.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Escherichia coli Infections/veterinary , Escherichia coli/drug effects , Microbial Sensitivity Tests/methods , Swine Diseases/microbiology , Animals , Escherichia coli Infections/microbiology , Swine
6.
PLoS One ; 11(1): e0146488, 2016.
Article in English | MEDLINE | ID: mdl-26820134

ABSTRACT

The aim of this study was to investigate the relationship between antimicrobial use and the occurrence of antimicrobial resistance in the digestive and respiratory tract in three different production systems of food producing animals. A longitudinal study was set up in 25 Belgian bovine herds (10 dairy, 10 beef, and 5 veal herds) for a 2 year monitoring of antimicrobial susceptibilities in E. coli and Pasteurellaceae retrieved from the rectum and the nasal cavity, respectively. During the first year of observation, the antimicrobial use was prospectively recorded on 15 of these farms (5 of each production type) and transformed into the treatment incidences according to the (animal) defined daily dose (TIADD) and (actually) used daily dose (TIUDD). Antimicrobial resistance rates of 4,174 E. coli (all herds) and 474 Pasteurellaceae (beef and veal herds only) isolates for 12 antimicrobial agents demonstrated large differences between intensively reared veal calves (abundant and inconstant) and more extensively reared dairy and beef cattle (sparse and relatively stable). Using linear mixed effect models, a strong relation was found between antimicrobial treatment incidences and resistance profiles of 1,639 E. coli strains (p<0.0001) and 309 Pasteurellaceae (p≤0.012). These results indicate that a high antimicrobial selection pressure, here found to be represented by low dosages of oral prophylactic and therapeutic group medication, converts not only the commensal microbiota from the digestive tract but also the opportunistic pathogenic bacteria in the respiratory tract into reservoirs of multi-resistance.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Cattle Diseases/drug therapy , Cephalosporins/administration & dosage , Respiratory Tract Infections/veterinary , beta-Lactams/administration & dosage , Agriculture , Animals , Anti-Bacterial Agents/chemical synthesis , Cattle , Cattle Diseases/epidemiology , Cephalosporins/chemical synthesis , Drug Resistance, Bacterial , Drug Utilization , Escherichia coli/drug effects , Microbial Sensitivity Tests , Prevalence , Prospective Studies , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/epidemiology , beta-Lactams/chemical synthesis
7.
Microb Drug Resist ; 21(1): 50-8, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25098762

ABSTRACT

This study investigated whether antimicrobial-resistant Escherichia coli in apparently healthy sows and antimicrobial administration to sows and piglets influenced antimicrobial resistance in fecal commensal E. coli from piglets. Sixty sows from three herds and three of their piglets were sampled at several time points. Antimicrobial usage data during parturition and farrowing were collected. Clinical resistance was determined for two isolates per sampling time point for sows and piglets using disk diffusion. Only 27.4% of E. coli isolates from newborn piglets showed no resistance. Resistance to one or two antimicrobial classes equaled 41.2% and 46.8% in isolates from sows and piglets, respectively, for the overall farrowing period. Multiresistance to at least four classes was found as frequently in sows (15.6%) as in piglets (15.2%). Antimicrobial resistance in piglets was influenced by antimicrobial use in sows and piglets and by the sow resistance level (p≤0.05). Using aminopenicillins and third-generation cephalosporins in piglets affected resistance levels in piglets (odds ratios [OR] >1; p≤0.05). Using enrofloxacin in piglets increased the odds for enrofloxacin resistance in piglets (OR=26.78; p≤0.0001) and sows at weaning (OR=4.04; p≤0.05). For sows, antimicrobial exposure to lincomycin-spectinomycin around parturition increased the resistance to ampicillin, streptomycin, trimethoprim-sulfadiazine in sows (OR=21.33, OR=142.74, OR=18.03; p≤0.05) and additionally to enrofloxacin in piglets (OR=7.50; p≤0.05). This study demonstrates that antimicrobial use in sows and piglets is a risk factor for antimicrobial resistance in the respective animals. Moreover, resistance determinants in E. coli from piglets are selected by using antimicrobials in their dam around parturition.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Drug Resistance, Microbial , Escherichia coli Infections/veterinary , Escherichia coli/drug effects , Sus scrofa/microbiology , Swine Diseases/microbiology , Animals , Belgium , Disease Reservoirs , Drug Utilization , Escherichia coli/genetics , Escherichia coli/isolation & purification , Escherichia coli Infections/microbiology , Escherichia coli Infections/transmission , Feces/microbiology , Female , Infectious Disease Transmission, Vertical/veterinary , Postpartum Period , Pregnancy , Selection, Genetic , Swine , Swine Diseases/transmission , Weaning
8.
J Antimicrob Chemother ; 69(3): 827-34, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24216767

ABSTRACT

OBJECTIVES: To evaluate correlations between antimicrobial use and the prevalence of resistance in commensal Escherichia coli isolates from pigs, poultry and cattle, using data from publicly available national or international reports from seven European countries. METHODS: The link between the quantities of different classes of antimicrobials administered to food-producing animals per country (expressed in mg/population correction unit) and the prevalence of resistance to the different antimicrobial classes (interpreted by EUCAST epidemiological cut-off values) in E. coli isolates (4831 isolates in total) was assessed by means of polynomial regression analysis and determination of Spearman's rank correlation coefficient. RESULTS: A quadratic regression best fitted the antimicrobial use and antimicrobial resistance data. The coefficient of determination was, in decreasing order, 0.99 for fluoroquinolones and amphenicols, 0.94 for third-generation cephalosporins and sulphonamides, 0.93 for aminopenicillins, 0.86 for fluoroquinolones, 0.81 for streptomycin and 0.80 for gentamicin and tetracycline. Spearman's rank correlation coefficient was 1 for amphenicols, 0.96 for sulphonamides, 0.93 for streptomycin and tetracycline, 0.89 for aminopenicillins, 0.71 for gentamicin and 0.70 for third-generation cephalosporins. CONCLUSIONS: These remarkably high coefficients indicate that, at a national level, the level of use of specific antimicrobials strongly correlates to the level of resistance towards these agents in commensal E. coli isolates in pigs, poultry and cattle. However, data restraints reveal the need for further detail in collection and harmonization of antimicrobial resistance and use data in Europe.


Subject(s)
Animal Husbandry/methods , Animals, Domestic/microbiology , Anti-Bacterial Agents/administration & dosage , Drug Resistance, Bacterial , Escherichia coli/drug effects , Animals , Cattle , Europe , Poultry , Prevalence , Swine
9.
Appl Environ Microbiol ; 79(21): 6677-83, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23974140

ABSTRACT

Fresh produce is known to carry nonpathogenic epiphytic microorganisms. During agricultural production and harvesting, leafy greens can become contaminated with antibiotic-resistant pathogens or commensals from animal and human sources. As lettuce does not undergo any inactivation or preservation treatment during processing, consumers may be exposed directly to all of the (resistant) bacteria present. In this study, we investigated whether lettuce or its production environment (irrigation water, soil) is able to act as a vector or reservoir of antimicrobial-resistant Escherichia coli. Over a 1-year period, eight lettuce farms were visited multiple times and 738 samples, including lettuce seedlings (leaves and soil), soil, irrigation water, and lettuce leaves were collected. From these samples, 473 isolates of Escherichia coli were obtained and tested for resistance to 14 antimicrobials. Fifty-four isolates (11.4%) were resistant to one or more antimicrobials. The highest resistance rate was observed for ampicillin (7%), followed by cephalothin, amoxicillin-clavulanic acid, tetracycline, trimethoprim, and streptomycin, with resistance rates between 4.4 and 3.6%. No resistance to amikacin, ciprofloxacin, gentamicin, or kanamycin was observed. One isolate was resistant to cefotaxime. Among the multiresistant isolates (n = 37), ampicillin and cephalothin showed the highest resistance rates, at 76 and 52%, respectively. E. coli isolates from lettuce showed higher resistance rates than E. coli isolates obtained from soil or irrigation water samples. When the presence of resistance in E. coli isolates from lettuce production sites and their resistance patterns were compared with the profiles of animal-derived E. coli strains, they were found to be the most comparable with what is found in the cattle reservoir. This may suggest that cattle are a potential reservoir of antimicrobial-resistant E. coli strains in plant primary production.


Subject(s)
Anti-Infective Agents/pharmacology , Disease Reservoirs/microbiology , Drug Resistance, Bacterial/genetics , Escherichia coli/genetics , Fresh Water/microbiology , Lactuca/microbiology , Soil Microbiology , Agricultural Irrigation , Animals , Belgium , Cattle , Disk Diffusion Antimicrobial Tests , Escherichia coli/drug effects
10.
Microb Drug Resist ; 19(2): 146-51, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23249177

ABSTRACT

Streptococcus suis (S. suis) has often been reported as an important swine pathogen and is considered as a new emerging zoonotic agent. Consequently, it is important to be informed on its susceptibility to antimicrobial agents. In the current study, the Minimum Inhibitory Concentration (MIC) population distribution of nine antimicrobial agents has been determined for nasal S. suis strains, isolated from healthy pigs at the end of the fattening period from 50 closed or semiclosed pig herds. The aim of the study was to report resistance based on both clinical breakpoints (clinical resistance percentage) and epidemiological cutoff values (non-wild-type percentage). Non-wild-type percentages were high for tetracycline (98%), lincomycin (92%), tilmicosin (72%), erythromycin (70%), tylosin (66%), and low for florfenicol (0%) and enrofloxacin (0.3%). Clinical resistance percentages were high for tetracycline (95%), erythromycin (66%), tylosin (66%), and low for florfenicol (0.3%) and enrofloxacin (0.3%). For tiamulin, for which no clinical breakpoint is available, 57% of the isolates did not belong to the wild-type population. Clinical resistance and non-wild-type percentages differed substantially for penicillin. Only 1% of the tested S. suis strains was considered as clinically resistant, whereas 47% of the strains showed acquired resistance when epidemiological cutoff values were used. In conclusion, MIC values for penicillin are gradually increasing, compared to previous reports, although pigs infected with strains showing higher MICs may still respond to treatment with penicillin. The high rate of acquired resistance against tiamulin has not been reported before. Results from this study clearly demonstrate that the use of different interpretive criteria contributes to the extent of differences in reported antimicrobial resistance results. The early detection of small changes in the MIC population distribution of isolates, while clinical failure may not yet be observed, provides the opportunity to implement appropriate risk management steps.


Subject(s)
Anti-Bacterial Agents/pharmacology , Penicillins/pharmacology , Streptococcus suis/drug effects , Swine/microbiology , Animals , Diterpenes/pharmacology , Drug Resistance, Bacterial/drug effects , Microbial Sensitivity Tests/veterinary , Nasal Cavity/microbiology , Streptococcus suis/growth & development , Streptococcus suis/isolation & purification
11.
Prev Vet Med ; 106(1): 53-62, 2012 Sep 01.
Article in English | MEDLINE | ID: mdl-22494905

ABSTRACT

The monitoring of antimicrobial use is an essential step to control the selection and spread of antimicrobial resistance. Between January and October 2010 data on prophylactic and metaphylactic antimicrobial use were collected retrospectively on 50 closed or semi-closed pig herds. Ninety-three percent of the group treatments were prophylactic whereas only 7% were methaphylactic. The most frequently used antimicrobials orally applied at group level were colistin (30.7%), amoxicillin (30.0%), trimethoprim-sulfonamides (13.1%), doxycycline (9.9%) and tylosin (8.1%). The most frequently applied injectable antimicrobials were tulathromycin (45.0%), long acting ceftiofur (40.1%) and long acting amoxicillin (8.4%). The treatment incidences (TI) based on the used daily dose pig (UDD(pig) or the actually administered dose per day per kg pig of a drug) for all oral and injectable antimicrobial drugs was on average 200.7 per 1000 pigs at risk per day (min=0, max=699.0), while the TI based on the animal daily dose pig (ADD(pig) or the national defined average maintenance dose per day per kg pig of a drug used for its main indication) was slightly higher (average=235.8, min=0, max=1322.1). This indicates that in reality fewer pigs were treated with the same amount of antimicrobials than theoretically possible. Injectable products were generally overdosed (79.5%), whereas oral treatments were often underdosed (47.3%). In conclusion, this study shows that prophylactic group treatment was applied in 98% of the visited herds and often includes the use of critically important and broad-spectrum antimicrobials. In Belgium, the guidelines for prudent use of antimicrobials are not yet implemented.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Antibiotic Prophylaxis/veterinary , Drug Resistance, Bacterial , Swine Diseases/prevention & control , Animals , Anti-Bacterial Agents/administration & dosage , Belgium , Dose-Response Relationship, Drug , Female , Male , Population Surveillance , Practice Guidelines as Topic , Retrospective Studies , Swine , Swine Diseases/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...