Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 8(1): 699, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29335503

ABSTRACT

Liquid-crystalline organic semiconductors exhibit unique properties that make them highly interesting for organic optoelectronic applications. Their optical and electrical anisotropies and the possibility to control the alignment of the liquid-crystalline semiconductor allow not only to optimize charge carrier transport, but to tune the optical property of organic thin-film devices as well. In this study, the molecular orientation in a liquid-crystalline semiconductor film is tuned by a novel blading process as well as by different annealing protocols. The altered alignment is verified by cross-polarized optical microscopy and spectroscopic ellipsometry. It is shown that a change in alignment of the liquid-crystalline semiconductor improves charge transport in single charge carrier devices profoundly. Comparing the current-voltage characteristics of single charge carrier devices with simulations shows an excellent agreement and from this an in-depth understanding of single charge carrier transport in two-terminal devices is obtained. Finally, p-i-n type organic light-emitting diodes (OLEDs) compatible with vacuum processing techniques used in state-of-the-art OLEDs are demonstrated employing liquid-crystalline host matrix in the emission layer.

2.
Opt Express ; 23(16): 21128-48, 2015 Aug 10.
Article in English | MEDLINE | ID: mdl-26367963

ABSTRACT

We present the results of an optical study in which we evaluate the effect of anisotropic electron transport layers (ETL) and anisotropic hole transport layers (HTL) on the outcoupling efficiency of bottom emitting organic light emitting diodes (OLEDs). We demonstrate that optical anisotropy can have a profound influence on the outcoupling efficiency and introduce a number of design rules which ensure that light extraction is enhanced by anisotropic layers.

3.
Opt Express ; 22 Suppl 3: A589-600, 2014 May 05.
Article in English | MEDLINE | ID: mdl-24922367

ABSTRACT

We report on the fabrication and simulation of a green OLED with an Internal Light Extraction (ILE) layer. The optical behavior of these devices is simulated using both Rigorous Coupled Wave Analysis (RCWA) and Finite Difference Time-Domain (FDTD) methods. Results obtained using these two different techniques show excellent agreement and predict the experimental results with good precision. By verifying the validity of both simulation methods on the internal light extraction structure we pave the way to optimization of ILE layers using either of these methods.

SELECTION OF CITATIONS
SEARCH DETAIL
...