Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biol Evol ; 39(3)2022 03 02.
Article in English | MEDLINE | ID: mdl-35106603

ABSTRACT

Identifying linked cases of infection is a critical component of the public health response to viral infectious diseases. In a clinical context, there is a need to make rapid assessments of whether cases of infection have arrived independently onto a ward, or are potentially linked via direct transmission. Viral genome sequence data are of great value in making these assessments, but are often not the only form of data available. Here, we describe A2B-COVID, a method for the rapid identification of potentially linked cases of COVID-19 infection designed for clinical settings. Our method combines knowledge about infection dynamics, data describing the movements of individuals, and evolutionary analysis of genome sequences to assess whether data collected from cases of infection are consistent or inconsistent with linkage via direct transmission. A retrospective analysis of data from two wards at Cambridge University Hospitals NHS Foundation Trust during the first wave of the pandemic showed qualitatively different patterns of linkage between cases on designated COVID-19 and non-COVID-19 wards. The subsequent real-time application of our method to data from the second epidemic wave highlights its value for monitoring cases of infection in a clinical context.


Subject(s)
COVID-19 , SARS-CoV-2 , Hospitals , Humans , Pandemics , Retrospective Studies , SARS-CoV-2/genetics
2.
Elife ; 102021 08 13.
Article in English | MEDLINE | ID: mdl-34387545

ABSTRACT

Monitoring the spread of SARS-CoV-2 and reconstructing transmission chains has become a major public health focus for many governments around the world. The modest mutation rate and rapid transmission of SARS-CoV-2 prevents the reconstruction of transmission chains from consensus genome sequences, but within-host genetic diversity could theoretically help identify close contacts. Here we describe the patterns of within-host diversity in 1181 SARS-CoV-2 samples sequenced to high depth in duplicate. 95.1% of samples show within-host mutations at detectable allele frequencies. Analyses of the mutational spectra revealed strong strand asymmetries suggestive of damage or RNA editing of the plus strand, rather than replication errors, dominating the accumulation of mutations during the SARS-CoV-2 pandemic. Within- and between-host diversity show strong purifying selection, particularly against nonsense mutations. Recurrent within-host mutations, many of which coincide with known phylogenetic homoplasies, display a spectrum and patterns of purifying selection more suggestive of mutational hotspots than recombination or convergent evolution. While allele frequencies suggest that most samples result from infection by a single lineage, we identify multiple putative examples of co-infection. Integrating these results into an epidemiological inference framework, we find that while sharing of within-host variants between samples could help the reconstruction of transmission chains, mutational hotspots and rare cases of superinfection can confound these analyses.


The COVID-19 pandemic has had major health impacts across the globe. The scientific community has focused much attention on finding ways to monitor how the virus responsible for the pandemic, SARS-CoV-2, spreads. One option is to perform genetic tests, known as sequencing, on SARS-CoV-2 samples to determine the genetic code of the virus and to find any differences or mutations in the genes between the viral samples. Viruses mutate within their hosts and can develop into variants that are able to more easily transmit between hosts. Genetic sequencing can reveal how genetically similar two SARS-CoV-2 samples are. But tracking how SARS-CoV-2 moves from one person to the next through sequencing can be tricky. Even a sample of SARS-CoV-2 viruses from the same individual can display differences in their genetic material or within-host variants. Could genetic testing of within-host variants shed light on factors driving SARS-CoV-2 to evolve in humans? To get to the bottom of this, Tonkin-Hill, Martincorena et al. probed the genetics of SARS-CoV-2 within-host variants using 1,181 samples. The analyses revealed that 95.1% of samples contained within-host variants. A number of variants occurred frequently in many samples, which were consistent with mutational hotspots in the SARS-CoV-2 genome. In addition, within-host variants displayed mutation patterns that were similar to patterns found between infected individuals. The shared within-host variants between samples can help to reconstruct transmission chains. However, the observed mutational hotspots and the detection of multiple strains within an individual can make this challenging. These findings could be used to help predict how SARS-CoV-2 evolves in response to interventions such as vaccines. They also suggest that caution is needed when using information on within-host variants to determine transmission between individuals.


Subject(s)
COVID-19/genetics , COVID-19/physiopathology , Genetic Variation , Genome, Viral , Host-Pathogen Interactions/genetics , Mutation , SARS-CoV-2/genetics , Base Sequence , Humans , Pandemics , Phylogeny
3.
Elife ; 102021 08 24.
Article in English | MEDLINE | ID: mdl-34425938

ABSTRACT

SARS-CoV-2 is notable both for its rapid spread, and for the heterogeneity of its patterns of transmission, with multiple published incidences of superspreading behaviour. Here, we applied a novel network reconstruction algorithm to infer patterns of viral transmission occurring between patients and health care workers (HCWs) in the largest clusters of COVID-19 infection identified during the first wave of the epidemic at Cambridge University Hospitals NHS Foundation Trust, UK. Based upon dates of individuals reporting symptoms, recorded individual locations, and viral genome sequence data, we show an uneven pattern of transmission between individuals, with patients being much more likely to be infected by other patients than by HCWs. Further, the data were consistent with a pattern of superspreading, whereby 21% of individuals caused 80% of transmission events. Our study provides a detailed retrospective analysis of nosocomial SARS-CoV-2 transmission, and sheds light on the need for intensive and pervasive infection control procedures.


The COVID-19 pandemic, caused by the SARS-CoV-2 virus, presents a global public health challenge. Hospitals have been at the forefront of this battle, treating large numbers of sick patients over several waves of infection. Finding ways to manage the spread of the virus in hospitals is key to protecting vulnerable patients and workers, while keeping hospitals running, but to generate effective infection control, researchers must understand how SARS-CoV-2 spreads. A range of factors make studying the transmission of SARS-CoV-2 in hospitals tricky. For instance, some people do not present any symptoms, and, amongst those who do, it can be difficult to determine whether they caught the virus in the hospital or somewhere else. However, comparing the genetic information of the SARS-CoV-2 virus from different people in a hospital could allow scientists to understand how it spreads. Samples of the genetic material of SARS-CoV-2 can be obtained by swabbing infected individuals. If the genetic sequences of two samples are very different, it is unlikely that the individuals who provided the samples transmitted the virus to one another. Illingworth, Hamilton et al. used this information, along with other data about how SARS-CoV-2 is transmitted, to develop an algorithm that can determine how the virus spreads from person to person in different hospital wards. To build their algorithm, Illingworth, Hamilton et al. collected SARS-CoV-2 genetic data from patients and staff in a hospital, and combined it with information about how SARS-CoV-2 spreads and how these people moved in the hospital . The algorithm showed that, for the most part, patients were infected by other patients (20 out of 22 cases), while staff were infected equally by patients and staff. By further probing these data, Illingworth, Hamilton et al. revealed that 80% of hospital-acquired infections were caused by a group of just 21% of individuals in the study, identifying a 'superspreader' pattern. These findings may help to inform SARS-CoV-2 infection control measures to reduce spread within hospitals, and could potentially be used to improve infection control in other contexts.


Subject(s)
COVID-19/epidemiology , COVID-19/transmission , Disease Outbreaks/statistics & numerical data , Hospitals/statistics & numerical data , Female , Humans , Male , Middle Aged , Retrospective Studies
4.
Microbiol Resour Announc ; 10(10)2021 Mar 11.
Article in English | MEDLINE | ID: mdl-33707329

ABSTRACT

Here, we report the coding-complete genome sequences of nine clinical severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants and their mutations. The samples were collected from nine Bangladeshi coronavirus disease 2019 (COVID-19) patients. We have identified the E484K escape mutation and the S359T mutation within the spike protein coding region of the sequenced genomes.

5.
Elife ; 102021 03 02.
Article in English | MEDLINE | ID: mdl-33650490

ABSTRACT

COVID-19 poses a major challenge to care homes, as SARS-CoV-2 is readily transmitted and causes disproportionately severe disease in older people. Here, 1167 residents from 337 care homes were identified from a dataset of 6600 COVID-19 cases from the East of England. Older age and being a care home resident were associated with increased mortality. SARS-CoV-2 genomes were available for 700 residents from 292 care homes. By integrating genomic and temporal data, 409 viral clusters within the 292 homes were identified, indicating two different patterns - outbreaks among care home residents and independent introductions with limited onward transmission. Approximately 70% of residents in the genomic analysis were admitted to hospital during the study, providing extensive opportunities for transmission between care homes and hospitals. Limiting viral transmission within care homes should be a key target for infection control to reduce COVID-19 mortality in this population.


Subject(s)
COVID-19/epidemiology , COVID-19/transmission , Nursing Homes , SARS-CoV-2/genetics , Aged, 80 and over , COVID-19/virology , Disease Outbreaks , England/epidemiology , Female , Humans , Infectious Disease Transmission, Patient-to-Professional , Infectious Disease Transmission, Professional-to-Patient , Male , Polymorphism, Single Nucleotide , Sequence Analysis , Time Factors
6.
Lancet Infect Dis ; 20(11): 1263-1272, 2020 11.
Article in English | MEDLINE | ID: mdl-32679081

ABSTRACT

BACKGROUND: The burden and influence of health-care associated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections is unknown. We aimed to examine the use of rapid SARS-CoV-2 sequencing combined with detailed epidemiological analysis to investigate health-care associated SARS-CoV-2 infections and inform infection control measures. METHODS: In this prospective surveillance study, we set up rapid SARS-CoV-2 nanopore sequencing from PCR-positive diagnostic samples collected from our hospital (Cambridge, UK) and a random selection from hospitals in the East of England, enabling sample-to-sequence in less than 24 h. We established a weekly review and reporting system with integration of genomic and epidemiological data to investigate suspected health-care associated COVID-19 cases. FINDINGS: Between March 13 and April 24, 2020, we collected clinical data and samples from 5613 patients with COVID-19 from across the East of England. We sequenced 1000 samples producing 747 high-quality genomes. We combined epidemiological and genomic analysis of the 299 patients from our hospital and identified 35 clusters of identical viruses involving 159 patients. 92 (58%) of 159 patients had strong epidemiological links and 32 (20%) patients had plausible epidemiological links. These results were fed back to clinical, infection control, and hospital management teams, leading to infection-control interventions and informing patient safety reporting. INTERPRETATION: We established real-time genomic surveillance of SARS-CoV-2 in a UK hospital and showed the benefit of combined genomic and epidemiological analysis for the investigation of health-care associated COVID-19. This approach enabled us to detect cryptic transmission events and identify opportunities to target infection-control interventions to further reduce health-care associated infections. Our findings have important implications for national public health policy as they enable rapid tracking and investigation of infections in hospital and community settings. FUNDING: COVID-19 Genomics UK funded by the Department of Health and Social Care, UK Research and Innovation, and the Wellcome Sanger Institute.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Cross Infection/epidemiology , Cross Infection/prevention & control , Infection Control/methods , Pandemics/prevention & control , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19 , Child , Child, Preschool , Coronavirus Infections/virology , Cross Infection/virology , England/epidemiology , Female , Genome, Viral/genetics , Hospitals, University , Humans , Infant , Infant, Newborn , Male , Middle Aged , Patient Safety , Phylogeny , Pneumonia, Viral/virology , Polymerase Chain Reaction/methods , Polymorphism, Single Nucleotide , Prospective Studies , SARS-CoV-2 , Whole Genome Sequencing/methods , Young Adult
7.
J Virol ; 93(16)2019 08 15.
Article in English | MEDLINE | ID: mdl-31142673

ABSTRACT

BK polyomavirus (BKPyV) is a small DNA virus that establishes a life-long persistent infection in the urinary tract of most people. BKPyV is known to cause severe morbidity in renal transplant recipients and can lead to graft rejection. The simple 5.2-kbp double-stranded DNA (dsDNA) genome expresses just seven known proteins; thus, it relies heavily on the host machinery to replicate. How the host proteome changes over the course of infection is key to understanding this host-virus interplay. Here, for the first time quantitative temporal viromics has been used to quantify global changes in >9,000 host proteins in two types of primary human epithelial cells throughout 72 h of BKPyV infection. These data demonstrate the importance of cell cycle progression and pseudo-G2 arrest in effective BKPyV replication, along with a surprising lack of an innate immune response throughout the whole virus replication cycle. BKPyV thus evades pathogen recognition to prevent activation of innate immune responses in a sophisticated manner.IMPORTANCE BK polyomavirus can cause serious problems in immune-suppressed patients, in particular, kidney transplant recipients who can develop polyomavirus-associated kidney disease. In this work, we have used advanced proteomics techniques to determine the changes to protein expression caused by infection of two independent primary cell types of the human urinary tract (kidney and bladder) throughout the replication cycle of this virus. Our findings have uncovered new details of a specific form of cell cycle arrest caused by this virus, and, importantly, we have identified that this virus has a remarkable ability to evade detection by host cell defense systems. In addition, our data provide an important resource for the future study of kidney epithelial cells and their infection by urinary tract pathogens.


Subject(s)
BK Virus/physiology , G2 Phase Cell Cycle Checkpoints , Immunity, Innate , Polyomavirus Infections/immunology , Polyomavirus Infections/metabolism , Polyomavirus Infections/virology , Proteome , Proteomics , Biomarkers , Cell Cycle Proteins/metabolism , Disease Resistance , Disease Susceptibility/immunology , Host-Pathogen Interactions/immunology , Humans , Proteomics/methods , Workflow
8.
Int J Mol Sci ; 19(3)2018 Mar 19.
Article in English | MEDLINE | ID: mdl-29562663

ABSTRACT

BK polyomavirus (BKPyV; hereafter referred to as BK) causes a lifelong chronic infection and is associated with debilitating disease in kidney transplant recipients. Despite its importance, aspects of the virus life cycle remain poorly understood. In addition to the structural proteins, the late region of the BK genome encodes for an auxiliary protein called agnoprotein. Studies on other polyomavirus agnoproteins have suggested that the protein may contribute to virion infectivity. Here, we demonstrate an essential role for agnoprotein in BK virus release. Viruses lacking agnoprotein fail to release from host cells and do not propagate to wild-type levels. Despite this, agnoprotein is not essential for virion infectivity or morphogenesis. Instead, agnoprotein expression correlates with nuclear egress of BK virions. We demonstrate that the agnoprotein binding partner α-soluble N-ethylmaleimide sensitive fusion (NSF) attachment protein (α-SNAP) is necessary for BK virion release, and siRNA knockdown of α-SNAP prevents nuclear release of wild-type BK virions. These data highlight a novel role for agnoprotein and begin to reveal the mechanism by which polyomaviruses leave an infected cell.


Subject(s)
BK Virus/physiology , Polyomavirus Infections/metabolism , Viral Regulatory and Accessory Proteins/metabolism , Animals , BK Virus/genetics , BK Virus/ultrastructure , Cell Nucleus/metabolism , Chlorocebus aethiops , Gene Expression Regulation, Viral , Nuclear Envelope/metabolism , Protein Binding , Soluble N-Ethylmaleimide-Sensitive Factor Attachment Proteins/metabolism , Transcription, Genetic , Vero Cells , Virion/metabolism , Virion/ultrastructure
9.
Open Biol ; 5(8)2015 Aug.
Article in English | MEDLINE | ID: mdl-26246492

ABSTRACT

BK polyomavirus (BKPyV) is a member of a family of potentially oncogenic viruses, whose reactivation can cause severe pathological conditions in transplant patients, leading to graft rejection. As with many non-enveloped viruses, it is assumed that virus release occurs through lysis of the host cell. We now show the first evidence for a non-lytic release pathway for BKPyV and that this pathway can be blocked by the anion channel inhibitor DIDS. Our data show a dose-dependent effect of DIDS on the release of BKPyV virions. We also observed an accumulation of viral capsids in large LAMP-1-positive acidic organelles within the cytoplasm of cells upon DIDS treatment, suggesting potential late endosome or lysosome-related compartments are involved in non-lytic BKPyV release. These data highlight a novel mechanism by which polyomaviruses can be released from infected cells in an active and non-lytic manner, and that anion homeostasis regulation is important in this pathway.


Subject(s)
Anions/metabolism , BK Virus/physiology , Homeostasis , 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid/pharmacology , Biological Transport , Cell Line , Humans , Vacuoles/metabolism , Virus Release/drug effects , Virus Replication , Voltage-Dependent Anion Channels/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...