Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Oecologia ; 199(1): 91-102, 2022 May.
Article in English | MEDLINE | ID: mdl-35451650

ABSTRACT

Birds aim to optimize resources for feeding young and self-maintenance by timing reproduction to coincide with peak food availability. When reproduction is mistimed, birds could incur costs that affect their survival. We studied whether nesting phenology correlated with the apparent survival of American kestrels (Falco sparverius) from two distinct populations and examined trends in clutch-initiation dates. We estimated apparent survival using multi-state mark-recapture models with nesting timing, nesting success, sex, age, and weather covariates. Nesting timing predicted the apparent survival of successful adults; however, the effect differed between populations. Early nesting kestrels had higher apparent survival than later nesters in the western population, where kestrels have a relatively long nesting season. At the eastern site, where kestrels have a relatively short nesting season, the pattern was reversed-later nesters had higher apparent survival than earlier nesters. Nesting timing did not affect the apparent survival of adults with failed nests suggesting that the energetic cost of producing fledglings contributed to the timing effect. Finally, clutch-initiation dates advanced in the western population and remained static in the eastern population. Given that both populations have seasonal declines in productivity, population-specific survival patterns provide insight into seasonal trade-offs. Specifically, nesting timing effects on survival paralleled productivity declines in the western population and inverse patterns of survival and reproduction in the eastern population suggest a condition-dependent trade-off. Concomitant seasonal declines in reproduction and survival may facilitate population-level responses to earlier springs, whereas seasonal trade-offs may constrain phenology shifts and increase vulnerability to mismatch.


Subject(s)
Falconiformes , Reproduction , Animals , Birds , Nesting Behavior/physiology , Reproduction/physiology , Seasons
2.
Mol Ecol Resour ; 21(1): 59-67, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32762107

ABSTRACT

Telomere length dynamics are an established biomarker of health and ageing in animals. The study of telomeres in numerous species has been facilitated by methods to measure telomere length by real-time quantitative PCR (qPCR). In this method, telomere length is determined by quantifying the amount of telomeric DNA repeats in a sample and normalizing this to the total amount of genomic DNA. This normalization requires the development of genomic reference primers suitable for qPCR, which remains challenging in nonmodel organism with genomes that have not been sequenced. Here we report reference primers that can be used in qPCR to measure telomere lengths in any vertebrate species. We designed primer pairs to amplify genetic elements that are highly conserved between evolutionarily distant taxa and tested them in species that span the vertebrate tree of life. We report five primer pairs that meet the specificity and reproducibility standards of qPCR. In addition, we demonstrate an approach to choose the best primers for a given species by testing the primers on multiple individuals within a species and then applying an established computational tool. These reference primers can facilitate qPCR-based telomere length measurements in any vertebrate species of ecological or economic interest.


Subject(s)
DNA Primers/genetics , Telomere , Vertebrates , Animals , Real-Time Polymerase Chain Reaction , Reproducibility of Results , Telomere/genetics , Vertebrates/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...