Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Surg ; 233(2): 213-20, 2001 Feb.
Article in English | MEDLINE | ID: mdl-11176127

ABSTRACT

OBJECTIVE: To determine whether blocking the cell surface expression of intracellular adhesion molecules (ICAM-1) in established severe acute pancreatitis (AP) would ameliorate pulmonary injury. SUMMARY BACKGROUND DATA: Lung injury in AP is in part mediated by infiltrating leukocytes, which are directed to lung tissue by ICAM-l. The authors' laboratory has previously demonstrated that AP results in overproduction of inflammatory cytokines, upregulation of pulmonary ICAM-1 expression, and a concomitant infiltration of neutrophils, which results in lung injury. METHODS: Young female mice were fed a choline-deficient/ethionine-supplemented diet to induce AP and were treated with a blocking dose of monoclonal antibody specific to the ICAM-1 receptor. Antibody treatment was administered at 72, 96, and 120 hours after beginning the diet, and all animals were killed at 144 hours. The degree of pancreatitis was evaluated by serum biochemical and tumor necrosis factor alpha levels as well as histology. The dual radiolabeled monoclonal antibody method was used to quantitate ICAM-1 cell surface expression in pulmonary tissue. Lung injury was assessed histologically and by determining lung microvascular permeability by measuring accumulated 125I-radiolabeled albumin. Pulmonary neutrophil sequestration was determined by the myeloperoxidase assay. RESULTS: All mice developed severe AP, and pancreatic injury was equally severe in both treated and untreated groups. Pulmonary ICAM-1 expression was significantly upregulated in animals with AP compared with controls. Treatment with a blocking dose of anti-ICAM-1 antibody after the induction of AP resulted in inhibited ICAM-1 cell surface expression to near control levels. Compared to untreated animals with AP, mice treated with anti-ICAM-1 mice had significantly reduced histologic lung injury and neutrophil sequestration, and a decreased microvascular permeability by more than twofold. CONCLUSIONS: These results demonstrate for the first time that treatment targeting the cell surface expression of ICAM-1 after the induction of AP ameliorates pulmonary injury, even in the face of severe pancreatic disease.


Subject(s)
Intercellular Adhesion Molecule-1/metabolism , Lung/metabolism , Lung/pathology , Pancreatitis/pathology , Acute Disease , Animals , Antibodies, Monoclonal , Female , Mice , Mice, Inbred Strains , Neutrophil Infiltration , Pancreas/pathology , Up-Regulation
2.
J Gastrointest Surg ; 4(3): 248-57, 2000.
Article in English | MEDLINE | ID: mdl-10769087

ABSTRACT

Lung injury is a major cause of patient morbidity in acute pancreatitis. The purpose of this study was to examine the mechanism of pulmonary infiltration and lung injury in acute pancreatitis. Mice were fed a choline-deficient/ethionine-supplemented (CDE) diet for 144 hours to induce severe acute pancreatitis. Serum samples were collected for measurement of biochemical markers of disease and for the detection of tumor necrosis factor-alpha (TNF-alpha). Cell surface adhesion molecule expression was quantified by the sensitive radiolabeled dual monoclonal antibody technique. Neutrophil sequestration in lung tissue was measured by the myeloperoxidase assay. Lung injury was determined histologically and lung edema was assessed by wet/dry ratios. Pancreatic injury was demonstrated to occur in all CDE-fed mice, which developed significant hyperamylasemia and hypoglycemia by 48 hours (P <0.0001). Serum TNF-alpha levels increased significantly by 48 hours over baseline values (P <0.02). Expression of intracellular adhesion molecule (ICAM-1) in pulmonary endothelia was significantly increased above baseline by 30% at 48 hours (P <0.02) and peaked at 120 hours by 100% (P <0.0001). Vascular cellular adhesion molecule (VCAM-1) was constitutively expressed at baseline and was upregulated threefold by 48 hours (P <0.0001). Neutrophil infiltration increased gradually 24 hours after ICAM-1 and VCAM-1 were upregulated with significant elevation of myeloperoxidase activity over baseline at 72 hours (7.2 +/- 1.2 vs. 18.1 +/- 2.2 activity units/gram tissue; P <0.05). Neutrophil infiltration peaked at 144 hours (26.24 +/- 10.49 activity units/gram tissue P <0.0001), and its kinetics correlated with the onset and progression of morphologic injury as well as increased lung edema. These results show that acute pancreatitis is associated with a systemic release of inflammatory cytokines, followed by increased expression of pulmonary ICAM-1 and VCAM-1, neutrophil infiltration, and histologic lung injury. The adhesion molecule axis may be a potential target for practical intervention to ameliorate lung injury and morbidity in acute pancreatitis.


Subject(s)
Intercellular Adhesion Molecule-1/metabolism , Pancreatitis/complications , Pulmonary Edema/etiology , Vascular Cell Adhesion Molecule-1/metabolism , Animals , Choline Deficiency , Female , Lung/pathology , Mice , Neutrophils/physiology , Pancreas/pathology , Pancreatitis/immunology , Pancreatitis/pathology , Peroxidase/metabolism , Pulmonary Edema/immunology , Pulmonary Edema/pathology , Time Factors , Tumor Necrosis Factor-alpha/metabolism , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...