Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Sports Act Living ; 6: 1416080, 2024.
Article in English | MEDLINE | ID: mdl-38873229

ABSTRACT

Introduction: Master athletes are examples of successful aging. It is not clear whether it is the competitive-oriented training or just the amount of total regular exercise that reduces the age-related decline in physiological functions. We aimed to compare health-related parameters in competitive (C) and physically active older adults (A) that performed the same weekly physical activity (PA) amount. Methods: Seventeen C and 17 A were matched for age (8 and 9 male participants under and over 70 years old respectively, for both groups) and weekly PA amount (GPAQ). Body composition, leg and arm maximal strength, balance and reaction time were measured; moreover, leg and arm exercise efficiency, estimated VO2max, and VO2/HR relationships were evaluated. Perception of life and sleep quality was also assessed through specific questionnaires (SF-36 and PSQI). The effect of group (C vs. A), age (U70 vs. O70) and their interaction was examined through a Two-Way ANOVA test. Results: C dedicated more time to vigorous PA compared to A (p = 0.03), while less to moderate daily work (p < 0.01) and active commuting (p = 0.06). C exhibited better body composition (all p < 0.05), higher leg maximal strength (p < 0.05) and a trend for elevated arm strength (p = 0.06). Reaction time, leg and arm cycling efficiency were similar in the two groups (all p > 0.05), while balance reduced in A O70. Estimated VO2max was higher for C in leg cycling (p = 0.05) and remained constant across ages (all p > 0.05). VO2/HR relationship, life and sleep quality did not differ for groups and ages. Conclusions: Regular physical exercise of about 6,000 METs/week seems to have a beneficial effect on health-related parameters, both in non-structured and competitive PA, when compared to sedentary behaviour. However, the older adults engaged in competitive training exhibit further advantages: better body composition, higher arm and leg muscle strength, and higher leg VO2max. This study highlights the importance of encouraging active lifestyles for maintaining long-term health, high levels of life quality perception and reducing age-related decline. However, vigorous training suitability needs to be verified by a team of PA specialists.

2.
Eur J Appl Physiol ; 124(4): 1185-1200, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37962573

ABSTRACT

PURPOSE: To evaluate the independent and combined effects of hypoxia (FiO2 = 13.5%) and cold (- 20 °C) on physiological and perceptual responses to endurance exercise. METHODS: 14 trained male subjects ( V . O2max: 64 ± 5 mL/kg/min) randomly performed a discontinuous maximal incremental test to exhaustion on a motorized treadmill under four environmental conditions: Normothermic-Normoxia (N), Normothermic-Hypoxia (H), Cold-Normoxia (C) and Cold-Hypoxia (CH). Performance and physiological and perceptual responses throughout exercise were evaluated. RESULTS: Maximal WorkLoad (WL) and WL at lactate threshold (LT) were reduced in C (- 2.3% and - 3.5%) and H (- 18.0% and - 21.7%) compared to N, with no interactive (p = 0.25 and 0.81) but additive effect in CH (- 21.5% and - 24.6%). Similarly, HRmax and Vemax were reduced in C (- 3.2% and - 14.6%) and H (- 5.0% and - 7%), showing additive effects in CH (- 7.7% and - 16.6%). At LT, additive effect of C (- 2.8%) and H (- 3.8%) on HR reduction in CH (- 5.7%) was maintained, whereas an interactive effect (p = 0.007) of the two stressors combined was noted on Ve (C: - 3.1%, H: + 5.5%, CH: - 10.9%). [La] curve shifted on the left in CH, displaying an interaction effect between the 2 stressors on this parameter. Finally, RPE at LT was exclusively reduced by hypoxia (p < 0.001), whereas TSmax is synergistically reduced by cold and hypoxia (interaction p = 0.047). CONCLUSION: If compared to single stress exposure, exercise performance and physiological and perceptual variables undergo additive or synergistic effects when cold and hypoxia are combined. These results provide new insight into human physiological responses to extreme environments.


Subject(s)
Hypoxia , Oxygen Consumption , Humans , Male , Oxygen Consumption/physiology , Exercise/physiology , Exercise Test , Exercise Therapy , Lactic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...